| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nregmodelaxext | Structured version Visualization version GIF version | ||
| Description: The Axiom of Extensionality ax-ext 2702 is true in the permutation model defined from 𝐹. This theorem is an immediate consequence of the fact that ax-ext 2702 holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| nregmodel.1 | ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) |
| nregmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| nregmodelaxext | ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nregmodel.1 | . . 3 ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) | |
| 2 | 1 | nregmodelf1o 45027 | . 2 ⊢ 𝐹:V–1-1-onto→V |
| 3 | nregmodel.2 | . 2 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 4 | 2, 3 | permaxext 45017 | 1 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 Vcvv 3434 ∖ cdif 3897 ∪ cun 3898 ∅c0 4281 {csn 4574 {cpr 4576 〈cop 4580 class class class wbr 5089 I cid 5508 E cep 5513 ◡ccnv 5613 ↾ cres 5616 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |