| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nregmodelaxext | Structured version Visualization version GIF version | ||
| Description: The Axiom of Extensionality ax-ext 2703 is true in the permutation model defined from 𝐹. This theorem is an immediate consequence of the fact that ax-ext 2703 holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| nregmodel.1 | ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) |
| nregmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| nregmodelaxext | ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nregmodel.1 | . . 3 ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) | |
| 2 | 1 | nregmodelf1o 45113 | . 2 ⊢ 𝐹:V–1-1-onto→V |
| 3 | nregmodel.2 | . 2 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 4 | 2, 3 | permaxext 45103 | 1 ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∅c0 4282 {csn 4575 {cpr 4577 〈cop 4581 class class class wbr 5093 I cid 5513 E cep 5518 ◡ccnv 5618 ↾ cres 5621 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |