Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodelaxext Structured version   Visualization version   GIF version

Theorem nregmodelaxext 45030
Description: The Axiom of Extensionality ax-ext 2702 is true in the permutation model defined from 𝐹. This theorem is an immediate consequence of the fact that ax-ext 2702 holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypotheses
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
nregmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
nregmodelaxext (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) → 𝑥 = 𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝐹
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦)

Proof of Theorem nregmodelaxext
StepHypRef Expression
1 nregmodel.1 . . 3 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
21nregmodelf1o 45027 . 2 𝐹:V–1-1-onto→V
3 nregmodel.2 . 2 𝑅 = (𝐹 ∘ E )
42, 3permaxext 45017 1 (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  Vcvv 3434  cdif 3897  cun 3898  c0 4281  {csn 4574  {cpr 4576  cop 4580   class class class wbr 5089   I cid 5508   E cep 5513  ccnv 5613  cres 5616  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator