Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodelaxext Structured version   Visualization version   GIF version

Theorem nregmodelaxext 45008
Description: The Axiom of Extensionality ax-ext 2701 is true in the permutation model defined from 𝐹. This theorem is an immediate consequence of the fact that ax-ext 2701 holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypotheses
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
nregmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
nregmodelaxext (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) → 𝑥 = 𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝐹
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦)

Proof of Theorem nregmodelaxext
StepHypRef Expression
1 nregmodel.1 . . 3 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
21nregmodelf1o 45005 . 2 𝐹:V–1-1-onto→V
3 nregmodel.2 . 2 𝑅 = (𝐹 ∘ E )
42, 3permaxext 44995 1 (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  Vcvv 3447  cdif 3911  cun 3912  c0 4296  {csn 4589  {cpr 4591  cop 4595   class class class wbr 5107   I cid 5532   E cep 5537  ccnv 5637  cres 5640  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator