Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petlemi Structured version   Visualization version   GIF version

Theorem petlemi 38910
Description: If you can prove disjointness (e.g. disjALTV0 38851, disjALTVid 38852, disjALTVidres 38853, disjALTVxrnidres 38855, search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV 38810), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021.)
Hypothesis
Ref Expression
petlemi.1 Disj 𝑅
Assertion
Ref Expression
petlemi (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))

Proof of Theorem petlemi
StepHypRef Expression
1 petlemi.1 . . 3 Disj 𝑅
21a1i 11 . 2 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → Disj 𝑅)
32petlem 38909 1 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  dom cdm 5614   / cqs 8621  ccoss 38221   EqvRel weqvrel 38238   Disj wdisjALTV 38255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624  df-qs 8628  df-coss 38512  df-refrel 38603  df-cnvrefrel 38618  df-symrel 38635  df-trrel 38669  df-eqvrel 38680  df-disjALTV 38802
This theorem is referenced by:  pet02  38911  petid2  38913  petidres2  38915  petinidres2  38917  petxrnidres2  38919
  Copyright terms: Public domain W3C validator