![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > petlemi | Structured version Visualization version GIF version |
Description: If you can prove disjointness (e.g. disjALTV0 37928, disjALTVid 37929, disjALTVidres 37930, disjALTVxrnidres 37932, search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV 37887), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021.) |
Ref | Expression |
---|---|
petlemi.1 | ⊢ Disj 𝑅 |
Ref | Expression |
---|---|
petlemi | ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | petlemi.1 | . . 3 ⊢ Disj 𝑅 | |
2 | 1 | a1i 11 | . 2 ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) |
3 | 2 | petlem 37986 | 1 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 dom cdm 5676 / cqs 8706 ≀ ccoss 37347 EqvRel weqvrel 37364 Disj wdisjALTV 37381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rmo 3375 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8709 df-qs 8713 df-coss 37585 df-refrel 37686 df-cnvrefrel 37701 df-symrel 37718 df-trrel 37748 df-eqvrel 37759 df-disjALTV 37879 |
This theorem is referenced by: pet02 37988 petid2 37990 petidres2 37992 petinidres2 37994 petxrnidres2 37996 |
Copyright terms: Public domain | W3C validator |