| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > petlemi | Structured version Visualization version GIF version | ||
| Description: If you can prove disjointness (e.g. disjALTV0 38851, disjALTVid 38852, disjALTVidres 38853, disjALTVxrnidres 38855, search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV 38810), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| petlemi.1 | ⊢ Disj 𝑅 |
| Ref | Expression |
|---|---|
| petlemi | ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petlemi.1 | . . 3 ⊢ Disj 𝑅 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) |
| 3 | 2 | petlem 38909 | 1 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 dom cdm 5614 / cqs 8621 ≀ ccoss 38221 EqvRel weqvrel 38238 Disj wdisjALTV 38255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-qs 8628 df-coss 38512 df-refrel 38603 df-cnvrefrel 38618 df-symrel 38635 df-trrel 38669 df-eqvrel 38680 df-disjALTV 38802 |
| This theorem is referenced by: pet02 38911 petid2 38913 petidres2 38915 petinidres2 38917 petxrnidres2 38919 |
| Copyright terms: Public domain | W3C validator |