| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > petlemi | Structured version Visualization version GIF version | ||
| Description: If you can prove disjointness (e.g. disjALTV0 38742, disjALTVid 38743, disjALTVidres 38744, disjALTVxrnidres 38746, search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV 38701), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| petlemi.1 | ⊢ Disj 𝑅 |
| Ref | Expression |
|---|---|
| petlemi | ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petlemi.1 | . . 3 ⊢ Disj 𝑅 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) |
| 3 | 2 | petlem 38800 | 1 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5619 / cqs 8624 ≀ ccoss 38165 EqvRel weqvrel 38182 Disj wdisjALTV 38199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3343 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8627 df-qs 8631 df-coss 38398 df-refrel 38499 df-cnvrefrel 38514 df-symrel 38531 df-trrel 38561 df-eqvrel 38572 df-disjALTV 38693 |
| This theorem is referenced by: pet02 38802 petid2 38804 petidres2 38806 petinidres2 38808 petxrnidres2 38810 |
| Copyright terms: Public domain | W3C validator |