Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petlemi Structured version   Visualization version   GIF version

Theorem petlemi 38801
Description: If you can prove disjointness (e.g. disjALTV0 38742, disjALTVid 38743, disjALTVidres 38744, disjALTVxrnidres 38746, search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV 38701), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021.)
Hypothesis
Ref Expression
petlemi.1 Disj 𝑅
Assertion
Ref Expression
petlemi (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))

Proof of Theorem petlemi
StepHypRef Expression
1 petlemi.1 . . 3 Disj 𝑅
21a1i 11 . 2 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → Disj 𝑅)
32petlem 38800 1 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  dom cdm 5619   / cqs 8624  ccoss 38165   EqvRel weqvrel 38182   Disj wdisjALTV 38199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3343  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-qs 8631  df-coss 38398  df-refrel 38499  df-cnvrefrel 38514  df-symrel 38531  df-trrel 38561  df-eqvrel 38572  df-disjALTV 38693
This theorem is referenced by:  pet02  38802  petid2  38804  petidres2  38806  petinidres2  38808  petxrnidres2  38810
  Copyright terms: Public domain W3C validator