Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islinei Structured version   Visualization version   GIF version

Theorem islinei 39722
Description: Condition implying "is a line". (Contributed by NM, 3-Feb-2012.)
Hypotheses
Ref Expression
isline.l = (le‘𝐾)
isline.j = (join‘𝐾)
isline.a 𝐴 = (Atoms‘𝐾)
isline.n 𝑁 = (Lines‘𝐾)
Assertion
Ref Expression
islinei (((𝐾𝐷𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})) → 𝑋𝑁)
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑄,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐷(𝑝)   (𝑝)   (𝑝)   𝑁(𝑝)   𝑋(𝑝)

Proof of Theorem islinei
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . 3 (((𝐾𝐷𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})) → 𝑄𝐴)
2 simpl3 1194 . . 3 (((𝐾𝐷𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})) → 𝑅𝐴)
3 simpr 484 . . 3 (((𝐾𝐷𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})) → (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)}))
4 neeq1 2987 . . . . 5 (𝑞 = 𝑄 → (𝑞𝑟𝑄𝑟))
5 oveq1 7360 . . . . . . . 8 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
65breq2d 5107 . . . . . . 7 (𝑞 = 𝑄 → (𝑝 (𝑞 𝑟) ↔ 𝑝 (𝑄 𝑟)))
76rabbidv 3404 . . . . . 6 (𝑞 = 𝑄 → {𝑝𝐴𝑝 (𝑞 𝑟)} = {𝑝𝐴𝑝 (𝑄 𝑟)})
87eqeq2d 2740 . . . . 5 (𝑞 = 𝑄 → (𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)} ↔ 𝑋 = {𝑝𝐴𝑝 (𝑄 𝑟)}))
94, 8anbi12d 632 . . . 4 (𝑞 = 𝑄 → ((𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) ↔ (𝑄𝑟𝑋 = {𝑝𝐴𝑝 (𝑄 𝑟)})))
10 neeq2 2988 . . . . 5 (𝑟 = 𝑅 → (𝑄𝑟𝑄𝑅))
11 oveq2 7361 . . . . . . . 8 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
1211breq2d 5107 . . . . . . 7 (𝑟 = 𝑅 → (𝑝 (𝑄 𝑟) ↔ 𝑝 (𝑄 𝑅)))
1312rabbidv 3404 . . . . . 6 (𝑟 = 𝑅 → {𝑝𝐴𝑝 (𝑄 𝑟)} = {𝑝𝐴𝑝 (𝑄 𝑅)})
1413eqeq2d 2740 . . . . 5 (𝑟 = 𝑅 → (𝑋 = {𝑝𝐴𝑝 (𝑄 𝑟)} ↔ 𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)}))
1510, 14anbi12d 632 . . . 4 (𝑟 = 𝑅 → ((𝑄𝑟𝑋 = {𝑝𝐴𝑝 (𝑄 𝑟)}) ↔ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})))
169, 15rspc2ev 3592 . . 3 ((𝑄𝐴𝑅𝐴 ∧ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})) → ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
171, 2, 3, 16syl3anc 1373 . 2 (((𝐾𝐷𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})) → ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
18 simpl1 1192 . . 3 (((𝐾𝐷𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})) → 𝐾𝐷)
19 isline.l . . . 4 = (le‘𝐾)
20 isline.j . . . 4 = (join‘𝐾)
21 isline.a . . . 4 𝐴 = (Atoms‘𝐾)
22 isline.n . . . 4 𝑁 = (Lines‘𝐾)
2319, 20, 21, 22isline 39721 . . 3 (𝐾𝐷 → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
2418, 23syl 17 . 2 (((𝐾𝐷𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})) → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
2517, 24mpbird 257 1 (((𝐾𝐷𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑋 = {𝑝𝐴𝑝 (𝑄 𝑅)})) → 𝑋𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3396   class class class wbr 5095  cfv 6486  (class class class)co 7353  lecple 17186  joincjn 18235  Atomscatm 39244  Linesclines 39476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-lines 39483
This theorem is referenced by:  linepmap  39757
  Copyright terms: Public domain W3C validator