Step | Hyp | Ref
| Expression |
1 | | simpl2 1191 |
. . 3
⊢ (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) → 𝑄 ∈ 𝐴) |
2 | | simpl3 1192 |
. . 3
⊢ (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) → 𝑅 ∈ 𝐴) |
3 | | simpr 485 |
. . 3
⊢ (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) → (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) |
4 | | neeq1 3006 |
. . . . 5
⊢ (𝑞 = 𝑄 → (𝑞 ≠ 𝑟 ↔ 𝑄 ≠ 𝑟)) |
5 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑞 = 𝑄 → (𝑞 ∨ 𝑟) = (𝑄 ∨ 𝑟)) |
6 | 5 | breq2d 5086 |
. . . . . . 7
⊢ (𝑞 = 𝑄 → (𝑝 ≤ (𝑞 ∨ 𝑟) ↔ 𝑝 ≤ (𝑄 ∨ 𝑟))) |
7 | 6 | rabbidv 3414 |
. . . . . 6
⊢ (𝑞 = 𝑄 → {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑟)}) |
8 | 7 | eqeq2d 2749 |
. . . . 5
⊢ (𝑞 = 𝑄 → (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ↔ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑟)})) |
9 | 4, 8 | anbi12d 631 |
. . . 4
⊢ (𝑞 = 𝑄 → ((𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ (𝑄 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑟)}))) |
10 | | neeq2 3007 |
. . . . 5
⊢ (𝑟 = 𝑅 → (𝑄 ≠ 𝑟 ↔ 𝑄 ≠ 𝑅)) |
11 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑅)) |
12 | 11 | breq2d 5086 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑝 ≤ (𝑄 ∨ 𝑟) ↔ 𝑝 ≤ (𝑄 ∨ 𝑅))) |
13 | 12 | rabbidv 3414 |
. . . . . 6
⊢ (𝑟 = 𝑅 → {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑟)} = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)}) |
14 | 13 | eqeq2d 2749 |
. . . . 5
⊢ (𝑟 = 𝑅 → (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑟)} ↔ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) |
15 | 10, 14 | anbi12d 631 |
. . . 4
⊢ (𝑟 = 𝑅 → ((𝑄 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑟)}) ↔ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)}))) |
16 | 9, 15 | rspc2ev 3572 |
. . 3
⊢ ((𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})) |
17 | 1, 2, 3, 16 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})) |
18 | | simpl1 1190 |
. . 3
⊢ (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) → 𝐾 ∈ 𝐷) |
19 | | isline.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
20 | | isline.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
21 | | isline.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
22 | | isline.n |
. . . 4
⊢ 𝑁 = (Lines‘𝐾) |
23 | 19, 20, 21, 22 | isline 37753 |
. . 3
⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
24 | 18, 23 | syl 17 |
. 2
⊢ (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
25 | 17, 24 | mpbird 256 |
1
⊢ (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) → 𝑋 ∈ 𝑁) |