Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islinei Structured version   Visualization version   GIF version

Theorem islinei 38599
Description: Condition implying "is a line". (Contributed by NM, 3-Feb-2012.)
Hypotheses
Ref Expression
isline.l ≀ = (leβ€˜πΎ)
isline.j ∨ = (joinβ€˜πΎ)
isline.a 𝐴 = (Atomsβ€˜πΎ)
isline.n 𝑁 = (Linesβ€˜πΎ)
Assertion
Ref Expression
islinei (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})) β†’ 𝑋 ∈ 𝑁)
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑄,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐷(𝑝)   ∨ (𝑝)   ≀ (𝑝)   𝑁(𝑝)   𝑋(𝑝)

Proof of Theorem islinei
Dummy variables π‘ž π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . 3 (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})) β†’ 𝑄 ∈ 𝐴)
2 simpl3 1193 . . 3 (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})) β†’ 𝑅 ∈ 𝐴)
3 simpr 485 . . 3 (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})) β†’ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)}))
4 neeq1 3003 . . . . 5 (π‘ž = 𝑄 β†’ (π‘ž β‰  π‘Ÿ ↔ 𝑄 β‰  π‘Ÿ))
5 oveq1 7412 . . . . . . . 8 (π‘ž = 𝑄 β†’ (π‘ž ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))
65breq2d 5159 . . . . . . 7 (π‘ž = 𝑄 β†’ (𝑝 ≀ (π‘ž ∨ π‘Ÿ) ↔ 𝑝 ≀ (𝑄 ∨ π‘Ÿ)))
76rabbidv 3440 . . . . . 6 (π‘ž = 𝑄 β†’ {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)} = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ π‘Ÿ)})
87eqeq2d 2743 . . . . 5 (π‘ž = 𝑄 β†’ (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)} ↔ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ π‘Ÿ)}))
94, 8anbi12d 631 . . . 4 (π‘ž = 𝑄 β†’ ((π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}) ↔ (𝑄 β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ π‘Ÿ)})))
10 neeq2 3004 . . . . 5 (π‘Ÿ = 𝑅 β†’ (𝑄 β‰  π‘Ÿ ↔ 𝑄 β‰  𝑅))
11 oveq2 7413 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (𝑄 ∨ π‘Ÿ) = (𝑄 ∨ 𝑅))
1211breq2d 5159 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (𝑝 ≀ (𝑄 ∨ π‘Ÿ) ↔ 𝑝 ≀ (𝑄 ∨ 𝑅)))
1312rabbidv 3440 . . . . . 6 (π‘Ÿ = 𝑅 β†’ {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ π‘Ÿ)} = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})
1413eqeq2d 2743 . . . . 5 (π‘Ÿ = 𝑅 β†’ (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ π‘Ÿ)} ↔ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)}))
1510, 14anbi12d 631 . . . 4 (π‘Ÿ = 𝑅 β†’ ((𝑄 β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ π‘Ÿ)}) ↔ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})))
169, 15rspc2ev 3623 . . 3 ((𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})) β†’ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}))
171, 2, 3, 16syl3anc 1371 . 2 (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})) β†’ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}))
18 simpl1 1191 . . 3 (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})) β†’ 𝐾 ∈ 𝐷)
19 isline.l . . . 4 ≀ = (leβ€˜πΎ)
20 isline.j . . . 4 ∨ = (joinβ€˜πΎ)
21 isline.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
22 isline.n . . . 4 𝑁 = (Linesβ€˜πΎ)
2319, 20, 21, 22isline 38598 . . 3 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)})))
2418, 23syl 17 . 2 (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)})))
2517, 24mpbird 256 1 (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (𝑄 ∨ 𝑅)})) β†’ 𝑋 ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070  {crab 3432   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  lecple 17200  joincjn 18260  Atomscatm 38121  Linesclines 38353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-lines 38360
This theorem is referenced by:  linepmap  38634
  Copyright terms: Public domain W3C validator