Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preiman0 Structured version   Visualization version   GIF version

Theorem preiman0 32725
Description: The preimage of a nonempty set is nonempty. (Contributed by Thierry Arnoux, 9-Jun-2024.)
Assertion
Ref Expression
preiman0 ((Fun 𝐹𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → (𝐹𝐴) ≠ ∅)

Proof of Theorem preiman0
StepHypRef Expression
1 df-rn 5700 . . . . . 6 ran 𝐹 = dom 𝐹
21ineq1i 4224 . . . . 5 (ran 𝐹 ∩ (𝐴 ∩ ran 𝐹)) = (dom 𝐹 ∩ (𝐴 ∩ ran 𝐹))
3 dfss2 3981 . . . . . . . . 9 (𝐴 ⊆ ran 𝐹 ↔ (𝐴 ∩ ran 𝐹) = 𝐴)
43biimpi 216 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴)
54ineq2d 4228 . . . . . . 7 (𝐴 ⊆ ran 𝐹 → (ran 𝐹 ∩ (𝐴 ∩ ran 𝐹)) = (ran 𝐹𝐴))
6 sseqin2 4231 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 ↔ (ran 𝐹𝐴) = 𝐴)
76biimpi 216 . . . . . . 7 (𝐴 ⊆ ran 𝐹 → (ran 𝐹𝐴) = 𝐴)
85, 7eqtrd 2775 . . . . . 6 (𝐴 ⊆ ran 𝐹 → (ran 𝐹 ∩ (𝐴 ∩ ran 𝐹)) = 𝐴)
983ad2ant2 1133 . . . . 5 ((Fun 𝐹𝐴 ⊆ ran 𝐹 ∧ (𝐹𝐴) = ∅) → (ran 𝐹 ∩ (𝐴 ∩ ran 𝐹)) = 𝐴)
10 fimacnvinrn 7091 . . . . . . . . 9 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
1110eqeq1d 2737 . . . . . . . 8 (Fun 𝐹 → ((𝐹𝐴) = ∅ ↔ (𝐹 “ (𝐴 ∩ ran 𝐹)) = ∅))
1211biimpa 476 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ∅)
13123adant2 1130 . . . . . 6 ((Fun 𝐹𝐴 ⊆ ran 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ∅)
14 imadisj 6100 . . . . . 6 ((𝐹 “ (𝐴 ∩ ran 𝐹)) = ∅ ↔ (dom 𝐹 ∩ (𝐴 ∩ ran 𝐹)) = ∅)
1513, 14sylib 218 . . . . 5 ((Fun 𝐹𝐴 ⊆ ran 𝐹 ∧ (𝐹𝐴) = ∅) → (dom 𝐹 ∩ (𝐴 ∩ ran 𝐹)) = ∅)
162, 9, 153eqtr3a 2799 . . . 4 ((Fun 𝐹𝐴 ⊆ ran 𝐹 ∧ (𝐹𝐴) = ∅) → 𝐴 = ∅)
17163expia 1120 . . 3 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) = ∅ → 𝐴 = ∅))
1817necon3d 2959 . 2 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐴 ≠ ∅ → (𝐹𝐴) ≠ ∅))
19183impia 1116 1 ((Fun 𝐹𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → (𝐹𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wne 2938  cin 3962  wss 3963  c0 4339  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569
This theorem is referenced by:  zarcmplem  33842
  Copyright terms: Public domain W3C validator