Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curry2ima Structured version   Visualization version   GIF version

Theorem curry2ima 32472
Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Hypothesis
Ref Expression
curry2ima.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2ima ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem curry2ima
StepHypRef Expression
1 simp1 1134 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐹 Fn (𝐴 × 𝐵))
2 dffn2 6718 . . . . . 6 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V)
31, 2sylib 217 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐹:(𝐴 × 𝐵)⟶V)
4 simp2 1135 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐶𝐵)
5 curry2ima.1 . . . . . 6 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
65curry2f 8107 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶V ∧ 𝐶𝐵) → 𝐺:𝐴⟶V)
73, 4, 6syl2anc 583 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐺:𝐴⟶V)
87ffund 6720 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → Fun 𝐺)
9 simp3 1136 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐷𝐴)
107fdmd 6727 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → dom 𝐺 = 𝐴)
119, 10sseqtrrd 4019 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐷 ⊆ dom 𝐺)
12 dfimafn 6955 . . 3 ((Fun 𝐺𝐷 ⊆ dom 𝐺) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦})
138, 11, 12syl2anc 583 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦})
145curry2val 8108 . . . . . . 7 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝑥) = (𝑥𝐹𝐶))
15143adant3 1130 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝑥) = (𝑥𝐹𝐶))
1615eqeq1d 2729 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → ((𝐺𝑥) = 𝑦 ↔ (𝑥𝐹𝐶) = 𝑦))
17 eqcom 2734 . . . . 5 ((𝑥𝐹𝐶) = 𝑦𝑦 = (𝑥𝐹𝐶))
1816, 17bitrdi 287 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → ((𝐺𝑥) = 𝑦𝑦 = (𝑥𝐹𝐶)))
1918rexbidv 3173 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (∃𝑥𝐷 (𝐺𝑥) = 𝑦 ↔ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)))
2019abbidv 2796 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
2113, 20eqtrd 2767 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  {cab 2704  wrex 3065  Vcvv 3469  wss 3944  {csn 4624   × cxp 5670  ccnv 5671  dom cdm 5672  cres 5674  cima 5675  ccom 5676  Fun wfun 6536   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  1st c1st 7985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-1st 7987  df-2nd 7988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator