Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curry2ima Structured version   Visualization version   GIF version

Theorem curry2ima 31020
Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Hypothesis
Ref Expression
curry2ima.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2ima ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem curry2ima
StepHypRef Expression
1 simp1 1134 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐹 Fn (𝐴 × 𝐵))
2 dffn2 6598 . . . . . 6 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V)
31, 2sylib 217 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐹:(𝐴 × 𝐵)⟶V)
4 simp2 1135 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐶𝐵)
5 curry2ima.1 . . . . . 6 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
65curry2f 7932 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶V ∧ 𝐶𝐵) → 𝐺:𝐴⟶V)
73, 4, 6syl2anc 583 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐺:𝐴⟶V)
87ffund 6600 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → Fun 𝐺)
9 simp3 1136 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐷𝐴)
107fdmd 6607 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → dom 𝐺 = 𝐴)
119, 10sseqtrrd 3966 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐷 ⊆ dom 𝐺)
12 dfimafn 6826 . . 3 ((Fun 𝐺𝐷 ⊆ dom 𝐺) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦})
138, 11, 12syl2anc 583 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦})
145curry2val 7933 . . . . . . 7 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝑥) = (𝑥𝐹𝐶))
15143adant3 1130 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝑥) = (𝑥𝐹𝐶))
1615eqeq1d 2741 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → ((𝐺𝑥) = 𝑦 ↔ (𝑥𝐹𝐶) = 𝑦))
17 eqcom 2746 . . . . 5 ((𝑥𝐹𝐶) = 𝑦𝑦 = (𝑥𝐹𝐶))
1816, 17bitrdi 286 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → ((𝐺𝑥) = 𝑦𝑦 = (𝑥𝐹𝐶)))
1918rexbidv 3227 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (∃𝑥𝐷 (𝐺𝑥) = 𝑦 ↔ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)))
2019abbidv 2808 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
2113, 20eqtrd 2779 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  wcel 2109  {cab 2716  wrex 3066  Vcvv 3430  wss 3891  {csn 4566   × cxp 5586  ccnv 5587  dom cdm 5588  cres 5590  cima 5591  ccom 5592  Fun wfun 6424   Fn wfn 6425  wf 6426  cfv 6430  (class class class)co 7268  1st c1st 7815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-1st 7817  df-2nd 7818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator