| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > curry2ima | Structured version Visualization version GIF version | ||
| Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
| Ref | Expression |
|---|---|
| curry2ima.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
| Ref | Expression |
|---|---|
| curry2ima | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹 Fn (𝐴 × 𝐵)) | |
| 2 | dffn2 6718 | . . . . . 6 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹:(𝐴 × 𝐵)⟶V) |
| 4 | simp2 1137 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐶 ∈ 𝐵) | |
| 5 | curry2ima.1 | . . . . . 6 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
| 6 | 5 | curry2f 8115 | . . . . 5 ⊢ ((𝐹:(𝐴 × 𝐵)⟶V ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶V) |
| 7 | 3, 4, 6 | syl2anc 584 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐺:𝐴⟶V) |
| 8 | 7 | ffund 6720 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → Fun 𝐺) |
| 9 | simp3 1138 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ 𝐴) | |
| 10 | 7 | fdmd 6726 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → dom 𝐺 = 𝐴) |
| 11 | 9, 10 | sseqtrrd 4001 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ dom 𝐺) |
| 12 | dfimafn 6951 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐷 ⊆ dom 𝐺) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) | |
| 13 | 8, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) |
| 14 | 5 | curry2val 8116 | . . . . . . 7 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
| 15 | 14 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
| 16 | 15 | eqeq1d 2736 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ (𝑥𝐹𝐶) = 𝑦)) |
| 17 | eqcom 2741 | . . . . 5 ⊢ ((𝑥𝐹𝐶) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶)) | |
| 18 | 16, 17 | bitrdi 287 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶))) |
| 19 | 18 | rexbidv 3166 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶))) |
| 20 | 19 | abbidv 2800 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
| 21 | 13, 20 | eqtrd 2769 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 Vcvv 3463 ⊆ wss 3931 {csn 4606 × cxp 5663 ◡ccnv 5664 dom cdm 5665 ↾ cres 5667 “ cima 5668 ∘ ccom 5669 Fun wfun 6535 Fn wfn 6536 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-1st 7996 df-2nd 7997 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |