![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > curry2ima | Structured version Visualization version GIF version |
Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
Ref | Expression |
---|---|
curry2ima.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2ima | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹 Fn (𝐴 × 𝐵)) | |
2 | dffn2 6751 | . . . . . 6 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V) | |
3 | 1, 2 | sylib 218 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹:(𝐴 × 𝐵)⟶V) |
4 | simp2 1137 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐶 ∈ 𝐵) | |
5 | curry2ima.1 | . . . . . 6 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
6 | 5 | curry2f 8151 | . . . . 5 ⊢ ((𝐹:(𝐴 × 𝐵)⟶V ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶V) |
7 | 3, 4, 6 | syl2anc 583 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐺:𝐴⟶V) |
8 | 7 | ffund 6753 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → Fun 𝐺) |
9 | simp3 1138 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ 𝐴) | |
10 | 7 | fdmd 6759 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → dom 𝐺 = 𝐴) |
11 | 9, 10 | sseqtrrd 4050 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ dom 𝐺) |
12 | dfimafn 6986 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐷 ⊆ dom 𝐺) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) | |
13 | 8, 11, 12 | syl2anc 583 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) |
14 | 5 | curry2val 8152 | . . . . . . 7 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
15 | 14 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
16 | 15 | eqeq1d 2742 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ (𝑥𝐹𝐶) = 𝑦)) |
17 | eqcom 2747 | . . . . 5 ⊢ ((𝑥𝐹𝐶) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶)) | |
18 | 16, 17 | bitrdi 287 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶))) |
19 | 18 | rexbidv 3185 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶))) |
20 | 19 | abbidv 2811 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
21 | 13, 20 | eqtrd 2780 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 {csn 4648 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ↾ cres 5702 “ cima 5703 ∘ ccom 5704 Fun wfun 6569 Fn wfn 6570 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 1st c1st 8030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-1st 8032 df-2nd 8033 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |