![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > curry2ima | Structured version Visualization version GIF version |
Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
Ref | Expression |
---|---|
curry2ima.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2ima | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹 Fn (𝐴 × 𝐵)) | |
2 | dffn2 6746 | . . . . . 6 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V) | |
3 | 1, 2 | sylib 218 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹:(𝐴 × 𝐵)⟶V) |
4 | simp2 1138 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐶 ∈ 𝐵) | |
5 | curry2ima.1 | . . . . . 6 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
6 | 5 | curry2f 8141 | . . . . 5 ⊢ ((𝐹:(𝐴 × 𝐵)⟶V ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶V) |
7 | 3, 4, 6 | syl2anc 584 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐺:𝐴⟶V) |
8 | 7 | ffund 6748 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → Fun 𝐺) |
9 | simp3 1139 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ 𝐴) | |
10 | 7 | fdmd 6754 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → dom 𝐺 = 𝐴) |
11 | 9, 10 | sseqtrrd 4040 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ dom 𝐺) |
12 | dfimafn 6978 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐷 ⊆ dom 𝐺) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) | |
13 | 8, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) |
14 | 5 | curry2val 8142 | . . . . . . 7 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
15 | 14 | 3adant3 1133 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
16 | 15 | eqeq1d 2739 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ (𝑥𝐹𝐶) = 𝑦)) |
17 | eqcom 2744 | . . . . 5 ⊢ ((𝑥𝐹𝐶) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶)) | |
18 | 16, 17 | bitrdi 287 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶))) |
19 | 18 | rexbidv 3179 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶))) |
20 | 19 | abbidv 2808 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
21 | 13, 20 | eqtrd 2777 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 {cab 2714 ∃wrex 3070 Vcvv 3481 ⊆ wss 3966 {csn 4634 × cxp 5691 ◡ccnv 5692 dom cdm 5693 ↾ cres 5695 “ cima 5696 ∘ ccom 5697 Fun wfun 6563 Fn wfn 6564 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-1st 8022 df-2nd 8023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |