Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curry2ima Structured version   Visualization version   GIF version

Theorem curry2ima 32638
Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Hypothesis
Ref Expression
curry2ima.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2ima ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem curry2ima
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐹 Fn (𝐴 × 𝐵))
2 dffn2 6692 . . . . . 6 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V)
31, 2sylib 218 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐹:(𝐴 × 𝐵)⟶V)
4 simp2 1137 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐶𝐵)
5 curry2ima.1 . . . . . 6 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
65curry2f 8089 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶V ∧ 𝐶𝐵) → 𝐺:𝐴⟶V)
73, 4, 6syl2anc 584 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐺:𝐴⟶V)
87ffund 6694 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → Fun 𝐺)
9 simp3 1138 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐷𝐴)
107fdmd 6700 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → dom 𝐺 = 𝐴)
119, 10sseqtrrd 3986 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐷 ⊆ dom 𝐺)
12 dfimafn 6925 . . 3 ((Fun 𝐺𝐷 ⊆ dom 𝐺) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦})
138, 11, 12syl2anc 584 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦})
145curry2val 8090 . . . . . . 7 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝑥) = (𝑥𝐹𝐶))
15143adant3 1132 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝑥) = (𝑥𝐹𝐶))
1615eqeq1d 2732 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → ((𝐺𝑥) = 𝑦 ↔ (𝑥𝐹𝐶) = 𝑦))
17 eqcom 2737 . . . . 5 ((𝑥𝐹𝐶) = 𝑦𝑦 = (𝑥𝐹𝐶))
1816, 17bitrdi 287 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → ((𝐺𝑥) = 𝑦𝑦 = (𝑥𝐹𝐶)))
1918rexbidv 3158 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (∃𝑥𝐷 (𝐺𝑥) = 𝑦 ↔ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)))
2019abbidv 2796 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
2113, 20eqtrd 2765 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  wss 3916  {csn 4591   × cxp 5638  ccnv 5639  dom cdm 5640  cres 5642  cima 5643  ccom 5644  Fun wfun 6507   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  1st c1st 7968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-1st 7970  df-2nd 7971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator