Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prelspr Structured version   Visualization version   GIF version

Theorem prelspr 45190
Description: An unordered pair of elements of a fixed set 𝑉 belongs to the set of all unordered pairs over the set 𝑉. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
prelspr ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉))

Proof of Theorem prelspr
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prelpwi 5382 . . . . 5 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ∈ 𝒫 𝑉)
2 eqidd 2738 . . . . . 6 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} = {𝑋, 𝑌})
3 preq1 4679 . . . . . . . 8 (𝑎 = 𝑋 → {𝑎, 𝑏} = {𝑋, 𝑏})
43eqeq2d 2748 . . . . . . 7 (𝑎 = 𝑋 → ({𝑋, 𝑌} = {𝑎, 𝑏} ↔ {𝑋, 𝑌} = {𝑋, 𝑏}))
5 preq2 4680 . . . . . . . 8 (𝑏 = 𝑌 → {𝑋, 𝑏} = {𝑋, 𝑌})
65eqeq2d 2748 . . . . . . 7 (𝑏 = 𝑌 → ({𝑋, 𝑌} = {𝑋, 𝑏} ↔ {𝑋, 𝑌} = {𝑋, 𝑌}))
74, 6rspc2ev 3581 . . . . . 6 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} = {𝑋, 𝑌}) → ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})
82, 7mpd3an3 1461 . . . . 5 ((𝑋𝑉𝑌𝑉) → ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})
91, 8jca 512 . . . 4 ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}))
109adantl 482 . . 3 ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}))
11 eqeq1 2741 . . . . 5 (𝑝 = {𝑋, 𝑌} → (𝑝 = {𝑎, 𝑏} ↔ {𝑋, 𝑌} = {𝑎, 𝑏}))
12112rexbidv 3210 . . . 4 (𝑝 = {𝑋, 𝑌} → (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}))
1312elrab 3634 . . 3 ({𝑋, 𝑌} ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}))
1410, 13sylibr 233 . 2 ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
15 sprvalpw 45184 . . 3 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
1615adantr 481 . 2 ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
1714, 16eleqtrrd 2841 1 ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wrex 3071  {crab 3404  𝒫 cpw 4545  {cpr 4573  cfv 6465  Pairscspr 45181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-iota 6417  df-fun 6467  df-fv 6473  df-spr 45182
This theorem is referenced by:  sprsymrelfolem2  45197  reupr  45226
  Copyright terms: Public domain W3C validator