Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prelspr Structured version   Visualization version   GIF version

Theorem prelspr 47610
Description: An unordered pair of elements of a fixed set 𝑉 belongs to the set of all unordered pairs over the set 𝑉. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
prelspr ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉))

Proof of Theorem prelspr
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prelpwi 5390 . . . . 5 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ∈ 𝒫 𝑉)
2 eqidd 2734 . . . . . 6 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} = {𝑋, 𝑌})
3 preq1 4685 . . . . . . . 8 (𝑎 = 𝑋 → {𝑎, 𝑏} = {𝑋, 𝑏})
43eqeq2d 2744 . . . . . . 7 (𝑎 = 𝑋 → ({𝑋, 𝑌} = {𝑎, 𝑏} ↔ {𝑋, 𝑌} = {𝑋, 𝑏}))
5 preq2 4686 . . . . . . . 8 (𝑏 = 𝑌 → {𝑋, 𝑏} = {𝑋, 𝑌})
65eqeq2d 2744 . . . . . . 7 (𝑏 = 𝑌 → ({𝑋, 𝑌} = {𝑋, 𝑏} ↔ {𝑋, 𝑌} = {𝑋, 𝑌}))
74, 6rspc2ev 3586 . . . . . 6 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} = {𝑋, 𝑌}) → ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})
82, 7mpd3an3 1464 . . . . 5 ((𝑋𝑉𝑌𝑉) → ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})
91, 8jca 511 . . . 4 ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}))
109adantl 481 . . 3 ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}))
11 eqeq1 2737 . . . . 5 (𝑝 = {𝑋, 𝑌} → (𝑝 = {𝑎, 𝑏} ↔ {𝑋, 𝑌} = {𝑎, 𝑏}))
12112rexbidv 3198 . . . 4 (𝑝 = {𝑋, 𝑌} → (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}))
1312elrab 3643 . . 3 ({𝑋, 𝑌} ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}))
1410, 13sylibr 234 . 2 ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
15 sprvalpw 47604 . . 3 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
1615adantr 480 . 2 ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
1714, 16eleqtrrd 2836 1 ((𝑉𝑊 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  𝒫 cpw 4549  {cpr 4577  cfv 6486  Pairscspr 47601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-spr 47602
This theorem is referenced by:  sprsymrelfolem2  47617  reupr  47646
  Copyright terms: Public domain W3C validator