Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prelspr | Structured version Visualization version GIF version |
Description: An unordered pair of elements of a fixed set 𝑉 belongs to the set of all unordered pairs over the set 𝑉. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
prelspr | ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpwi 5382 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ∈ 𝒫 𝑉) | |
2 | eqidd 2738 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} = {𝑋, 𝑌}) | |
3 | preq1 4679 | . . . . . . . 8 ⊢ (𝑎 = 𝑋 → {𝑎, 𝑏} = {𝑋, 𝑏}) | |
4 | 3 | eqeq2d 2748 | . . . . . . 7 ⊢ (𝑎 = 𝑋 → ({𝑋, 𝑌} = {𝑎, 𝑏} ↔ {𝑋, 𝑌} = {𝑋, 𝑏})) |
5 | preq2 4680 | . . . . . . . 8 ⊢ (𝑏 = 𝑌 → {𝑋, 𝑏} = {𝑋, 𝑌}) | |
6 | 5 | eqeq2d 2748 | . . . . . . 7 ⊢ (𝑏 = 𝑌 → ({𝑋, 𝑌} = {𝑋, 𝑏} ↔ {𝑋, 𝑌} = {𝑋, 𝑌})) |
7 | 4, 6 | rspc2ev 3581 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} = {𝑋, 𝑌}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}) |
8 | 2, 7 | mpd3an3 1461 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}) |
9 | 1, 8 | jca 512 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})) |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})) |
11 | eqeq1 2741 | . . . . 5 ⊢ (𝑝 = {𝑋, 𝑌} → (𝑝 = {𝑎, 𝑏} ↔ {𝑋, 𝑌} = {𝑎, 𝑏})) | |
12 | 11 | 2rexbidv 3210 | . . . 4 ⊢ (𝑝 = {𝑋, 𝑌} → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})) |
13 | 12 | elrab 3634 | . . 3 ⊢ ({𝑋, 𝑌} ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})) |
14 | 10, 13 | sylibr 233 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
15 | sprvalpw 45184 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
16 | 15 | adantr 481 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
17 | 14, 16 | eleqtrrd 2841 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 {crab 3404 𝒫 cpw 4545 {cpr 4573 ‘cfv 6465 Pairscspr 45181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-iota 6417 df-fun 6467 df-fv 6473 df-spr 45182 |
This theorem is referenced by: sprsymrelfolem2 45197 reupr 45226 |
Copyright terms: Public domain | W3C validator |