| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prelspr | Structured version Visualization version GIF version | ||
| Description: An unordered pair of elements of a fixed set 𝑉 belongs to the set of all unordered pairs over the set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| Ref | Expression |
|---|---|
| prelspr | ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prelpwi 5407 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ∈ 𝒫 𝑉) | |
| 2 | eqidd 2730 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} = {𝑋, 𝑌}) | |
| 3 | preq1 4697 | . . . . . . . 8 ⊢ (𝑎 = 𝑋 → {𝑎, 𝑏} = {𝑋, 𝑏}) | |
| 4 | 3 | eqeq2d 2740 | . . . . . . 7 ⊢ (𝑎 = 𝑋 → ({𝑋, 𝑌} = {𝑎, 𝑏} ↔ {𝑋, 𝑌} = {𝑋, 𝑏})) |
| 5 | preq2 4698 | . . . . . . . 8 ⊢ (𝑏 = 𝑌 → {𝑋, 𝑏} = {𝑋, 𝑌}) | |
| 6 | 5 | eqeq2d 2740 | . . . . . . 7 ⊢ (𝑏 = 𝑌 → ({𝑋, 𝑌} = {𝑋, 𝑏} ↔ {𝑋, 𝑌} = {𝑋, 𝑌})) |
| 7 | 4, 6 | rspc2ev 3601 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} = {𝑋, 𝑌}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}) |
| 8 | 2, 7 | mpd3an3 1464 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏}) |
| 9 | 1, 8 | jca 511 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})) |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})) |
| 11 | eqeq1 2733 | . . . . 5 ⊢ (𝑝 = {𝑋, 𝑌} → (𝑝 = {𝑎, 𝑏} ↔ {𝑋, 𝑌} = {𝑎, 𝑏})) | |
| 12 | 11 | 2rexbidv 3202 | . . . 4 ⊢ (𝑝 = {𝑋, 𝑌} → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})) |
| 13 | 12 | elrab 3659 | . . 3 ⊢ ({𝑋, 𝑌} ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})) |
| 14 | 10, 13 | sylibr 234 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
| 15 | sprvalpw 47481 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
| 16 | 15 | adantr 480 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
| 17 | 14, 16 | eleqtrrd 2831 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 𝒫 cpw 4563 {cpr 4591 ‘cfv 6511 Pairscspr 47478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-spr 47479 |
| This theorem is referenced by: sprsymrelfolem2 47494 reupr 47523 |
| Copyright terms: Public domain | W3C validator |