Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalpr Structured version   Visualization version   GIF version

Theorem lincvalpr 45759
Description: The linear combination over an unordered pair. (Contributed by AV, 16-Apr-2019.)
Hypotheses
Ref Expression
lincvalsn.b 𝐵 = (Base‘𝑀)
lincvalsn.s 𝑆 = (Scalar‘𝑀)
lincvalsn.r 𝑅 = (Base‘𝑆)
lincvalsn.t · = ( ·𝑠𝑀)
lincvalpr.p + = (+g𝑀)
lincvalpr.f 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}
Assertion
Ref Expression
lincvalpr (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))

Proof of Theorem lincvalpr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑀 ∈ LMod)
213ad2ant1 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ LMod)
3 lincvalsn.r . . . . . . . . 9 𝑅 = (Base‘𝑆)
4 lincvalsn.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑀)
54fveq2i 6777 . . . . . . . . 9 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
63, 5eqtri 2766 . . . . . . . 8 𝑅 = (Base‘(Scalar‘𝑀))
76eleq2i 2830 . . . . . . 7 (𝑋𝑅𝑋 ∈ (Base‘(Scalar‘𝑀)))
87biimpi 215 . . . . . 6 (𝑋𝑅𝑋 ∈ (Base‘(Scalar‘𝑀)))
98anim2i 617 . . . . 5 ((𝑉𝐵𝑋𝑅) → (𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))))
1093ad2ant2 1133 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))))
116eleq2i 2830 . . . . . . 7 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
1211biimpi 215 . . . . . 6 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
1312anim2i 617 . . . . 5 ((𝑊𝐵𝑌𝑅) → (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))))
14133ad2ant3 1134 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))))
15 fvexd 6789 . . . . . . 7 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
1615anim2i 617 . . . . . 6 ((𝑉𝑊𝑀 ∈ LMod) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
1716ancoms 459 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
18173ad2ant1 1132 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
19 lincvalpr.f . . . . 5 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}
2019mapprop 45682 . . . 4 (((𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))) ∧ (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))) ∧ (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V)) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉, 𝑊}))
2110, 14, 18, 20syl3anc 1370 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉, 𝑊}))
22 lincvalsn.b . . . . . . . 8 𝐵 = (Base‘𝑀)
2322eleq2i 2830 . . . . . . 7 (𝑉𝐵𝑉 ∈ (Base‘𝑀))
2423biimpi 215 . . . . . 6 (𝑉𝐵𝑉 ∈ (Base‘𝑀))
2524adantr 481 . . . . 5 ((𝑉𝐵𝑋𝑅) → 𝑉 ∈ (Base‘𝑀))
2622eleq2i 2830 . . . . . . 7 (𝑊𝐵𝑊 ∈ (Base‘𝑀))
2726biimpi 215 . . . . . 6 (𝑊𝐵𝑊 ∈ (Base‘𝑀))
2827adantr 481 . . . . 5 ((𝑊𝐵𝑌𝑅) → 𝑊 ∈ (Base‘𝑀))
29 prelpwi 5363 . . . . 5 ((𝑉 ∈ (Base‘𝑀) ∧ 𝑊 ∈ (Base‘𝑀)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
3025, 28, 29syl2an 596 . . . 4 (((𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
31303adant1 1129 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
32 lincval 45750 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉, 𝑊}) ∧ {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
332, 21, 31, 32syl3anc 1370 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
34 lmodcmn 20171 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
3534adantr 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑀 ∈ CMnd)
36353ad2ant1 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ CMnd)
37 simpr 485 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑉𝑊)
38 simpl 483 . . . . 5 ((𝑉𝐵𝑋𝑅) → 𝑉𝐵)
39 simpl 483 . . . . 5 ((𝑊𝐵𝑌𝑅) → 𝑊𝐵)
4037, 38, 393anim123i 1150 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝑊𝑉𝐵𝑊𝐵))
41 3anrot 1099 . . . 4 ((𝑉𝑊𝑉𝐵𝑊𝐵) ↔ (𝑉𝐵𝑊𝐵𝑉𝑊))
4240, 41sylib 217 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝐵𝑊𝐵𝑉𝑊))
4319a1i 11 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩})
4443fveq1d 6776 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝐹𝑉) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉))
45 simprl 768 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑉𝐵)
46 simprr 770 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑋𝑅)
4737adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑉𝑊)
48 fvpr1g 7062 . . . . . . . 8 ((𝑉𝐵𝑋𝑅𝑉𝑊) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
4945, 46, 47, 48syl3anc 1370 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
5044, 49eqtrd 2778 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝐹𝑉) = 𝑋)
5150oveq1d 7290 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) = (𝑋( ·𝑠𝑀)𝑉))
521adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑀 ∈ LMod)
53 eqid 2738 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5422, 4, 53, 3lmodvscl 20140 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝑅𝑉𝐵) → (𝑋( ·𝑠𝑀)𝑉) ∈ 𝐵)
5552, 46, 45, 54syl3anc 1370 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝑋( ·𝑠𝑀)𝑉) ∈ 𝐵)
5651, 55eqeltrd 2839 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
57563adant3 1131 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
5819a1i 11 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩})
5958fveq1d 6776 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊))
60 simprl 768 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊𝐵)
61 simprr 770 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑌𝑅)
6237adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝑊)
63 fvpr2g 7063 . . . . . . . 8 ((𝑊𝐵𝑌𝑅𝑉𝑊) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
6460, 61, 62, 63syl3anc 1370 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
6559, 64eqtrd 2778 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = 𝑌)
6665oveq1d 7290 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) = (𝑌( ·𝑠𝑀)𝑊))
671adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ LMod)
6822, 4, 53, 3lmodvscl 20140 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑌𝑅𝑊𝐵) → (𝑌( ·𝑠𝑀)𝑊) ∈ 𝐵)
6967, 61, 60, 68syl3anc 1370 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝑌( ·𝑠𝑀)𝑊) ∈ 𝐵)
7066, 69eqeltrd 2839 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)
71703adant2 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)
72 lincvalpr.p . . . 4 + = (+g𝑀)
73 fveq2 6774 . . . . 5 (𝑣 = 𝑉 → (𝐹𝑣) = (𝐹𝑉))
74 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
7573, 74oveq12d 7293 . . . 4 (𝑣 = 𝑉 → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝐹𝑉)( ·𝑠𝑀)𝑉))
76 fveq2 6774 . . . . 5 (𝑣 = 𝑊 → (𝐹𝑣) = (𝐹𝑊))
77 id 22 . . . . 5 (𝑣 = 𝑊𝑣 = 𝑊)
7876, 77oveq12d 7293 . . . 4 (𝑣 = 𝑊 → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝐹𝑊)( ·𝑠𝑀)𝑊))
7922, 72, 75, 78gsumpr 19556 . . 3 ((𝑀 ∈ CMnd ∧ (𝑉𝐵𝑊𝐵𝑉𝑊) ∧ (((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵 ∧ ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)) → (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)))
8036, 42, 57, 71, 79syl112anc 1373 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)))
81 lincvalsn.t . . . . . 6 · = ( ·𝑠𝑀)
8281a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → · = ( ·𝑠𝑀))
8382eqcomd 2744 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ( ·𝑠𝑀) = · )
8419fveq1i 6775 . . . . 5 (𝐹𝑉) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉)
85383ad2ant2 1133 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝐵)
86 simpr 485 . . . . . . 7 ((𝑉𝐵𝑋𝑅) → 𝑋𝑅)
87863ad2ant2 1133 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑋𝑅)
88373ad2ant1 1132 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝑊)
8985, 87, 88, 48syl3anc 1370 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
9084, 89eqtrid 2790 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑉) = 𝑋)
91 eqidd 2739 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉 = 𝑉)
9283, 90, 91oveq123d 7296 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) = (𝑋 · 𝑉))
9319fveq1i 6775 . . . . 5 (𝐹𝑊) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊)
94393ad2ant3 1134 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊𝐵)
95 simpr 485 . . . . . . 7 ((𝑊𝐵𝑌𝑅) → 𝑌𝑅)
96953ad2ant3 1134 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑌𝑅)
9794, 96, 88, 63syl3anc 1370 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
9893, 97eqtrid 2790 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = 𝑌)
99 eqidd 2739 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊 = 𝑊)
10083, 98, 99oveq123d 7296 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) = (𝑌 · 𝑊))
10192, 100oveq12d 7293 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))
10233, 80, 1013eqtrd 2782 1 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  𝒫 cpw 4533  {cpr 4563  cop 4567  cmpt 5157  cfv 6433  (class class class)co 7275  m cmap 8615  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966   Σg cgsu 17151  CMndccmn 19386  LModclmod 20123   linC clinc 45745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-linc 45747
This theorem is referenced by:  ldepspr  45814
  Copyright terms: Public domain W3C validator