Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalpr Structured version   Visualization version   GIF version

Theorem lincvalpr 44827
Description: The linear combination over an unordered pair. (Contributed by AV, 16-Apr-2019.)
Hypotheses
Ref Expression
lincvalsn.b 𝐵 = (Base‘𝑀)
lincvalsn.s 𝑆 = (Scalar‘𝑀)
lincvalsn.r 𝑅 = (Base‘𝑆)
lincvalsn.t · = ( ·𝑠𝑀)
lincvalpr.p + = (+g𝑀)
lincvalpr.f 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}
Assertion
Ref Expression
lincvalpr (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))

Proof of Theorem lincvalpr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑀 ∈ LMod)
213ad2ant1 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ LMod)
3 lincvalsn.r . . . . . . . . 9 𝑅 = (Base‘𝑆)
4 lincvalsn.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑀)
54fveq2i 6648 . . . . . . . . 9 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
63, 5eqtri 2821 . . . . . . . 8 𝑅 = (Base‘(Scalar‘𝑀))
76eleq2i 2881 . . . . . . 7 (𝑋𝑅𝑋 ∈ (Base‘(Scalar‘𝑀)))
87biimpi 219 . . . . . 6 (𝑋𝑅𝑋 ∈ (Base‘(Scalar‘𝑀)))
98anim2i 619 . . . . 5 ((𝑉𝐵𝑋𝑅) → (𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))))
1093ad2ant2 1131 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))))
116eleq2i 2881 . . . . . . 7 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
1211biimpi 219 . . . . . 6 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
1312anim2i 619 . . . . 5 ((𝑊𝐵𝑌𝑅) → (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))))
14133ad2ant3 1132 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))))
15 fvexd 6660 . . . . . . 7 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
1615anim2i 619 . . . . . 6 ((𝑉𝑊𝑀 ∈ LMod) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
1716ancoms 462 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
18173ad2ant1 1130 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
19 lincvalpr.f . . . . 5 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}
2019mapprop 44748 . . . 4 (((𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))) ∧ (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))) ∧ (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V)) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉, 𝑊}))
2110, 14, 18, 20syl3anc 1368 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉, 𝑊}))
22 lincvalsn.b . . . . . . . 8 𝐵 = (Base‘𝑀)
2322eleq2i 2881 . . . . . . 7 (𝑉𝐵𝑉 ∈ (Base‘𝑀))
2423biimpi 219 . . . . . 6 (𝑉𝐵𝑉 ∈ (Base‘𝑀))
2524adantr 484 . . . . 5 ((𝑉𝐵𝑋𝑅) → 𝑉 ∈ (Base‘𝑀))
2622eleq2i 2881 . . . . . . 7 (𝑊𝐵𝑊 ∈ (Base‘𝑀))
2726biimpi 219 . . . . . 6 (𝑊𝐵𝑊 ∈ (Base‘𝑀))
2827adantr 484 . . . . 5 ((𝑊𝐵𝑌𝑅) → 𝑊 ∈ (Base‘𝑀))
29 prelpwi 5305 . . . . 5 ((𝑉 ∈ (Base‘𝑀) ∧ 𝑊 ∈ (Base‘𝑀)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
3025, 28, 29syl2an 598 . . . 4 (((𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
31303adant1 1127 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
32 lincval 44818 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉, 𝑊}) ∧ {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
332, 21, 31, 32syl3anc 1368 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
34 lmodcmn 19675 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
3534adantr 484 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑀 ∈ CMnd)
36353ad2ant1 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ CMnd)
37 simpr 488 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑉𝑊)
38 simpl 486 . . . . 5 ((𝑉𝐵𝑋𝑅) → 𝑉𝐵)
39 simpl 486 . . . . 5 ((𝑊𝐵𝑌𝑅) → 𝑊𝐵)
4037, 38, 393anim123i 1148 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝑊𝑉𝐵𝑊𝐵))
41 3anrot 1097 . . . 4 ((𝑉𝑊𝑉𝐵𝑊𝐵) ↔ (𝑉𝐵𝑊𝐵𝑉𝑊))
4240, 41sylib 221 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝐵𝑊𝐵𝑉𝑊))
4319a1i 11 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩})
4443fveq1d 6647 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝐹𝑉) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉))
45 simprl 770 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑉𝐵)
46 simprr 772 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑋𝑅)
4737adantr 484 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑉𝑊)
48 fvpr1g 6931 . . . . . . . 8 ((𝑉𝐵𝑋𝑅𝑉𝑊) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
4945, 46, 47, 48syl3anc 1368 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
5044, 49eqtrd 2833 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝐹𝑉) = 𝑋)
5150oveq1d 7150 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) = (𝑋( ·𝑠𝑀)𝑉))
521adantr 484 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑀 ∈ LMod)
53 eqid 2798 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5422, 4, 53, 3lmodvscl 19644 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝑅𝑉𝐵) → (𝑋( ·𝑠𝑀)𝑉) ∈ 𝐵)
5552, 46, 45, 54syl3anc 1368 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝑋( ·𝑠𝑀)𝑉) ∈ 𝐵)
5651, 55eqeltrd 2890 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
57563adant3 1129 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
5819a1i 11 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩})
5958fveq1d 6647 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊))
60 simprl 770 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊𝐵)
61 simprr 772 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑌𝑅)
6237adantr 484 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝑊)
63 fvpr2g 6932 . . . . . . . 8 ((𝑊𝐵𝑌𝑅𝑉𝑊) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
6460, 61, 62, 63syl3anc 1368 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
6559, 64eqtrd 2833 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = 𝑌)
6665oveq1d 7150 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) = (𝑌( ·𝑠𝑀)𝑊))
671adantr 484 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ LMod)
6822, 4, 53, 3lmodvscl 19644 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑌𝑅𝑊𝐵) → (𝑌( ·𝑠𝑀)𝑊) ∈ 𝐵)
6967, 61, 60, 68syl3anc 1368 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝑌( ·𝑠𝑀)𝑊) ∈ 𝐵)
7066, 69eqeltrd 2890 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)
71703adant2 1128 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)
72 lincvalpr.p . . . 4 + = (+g𝑀)
73 fveq2 6645 . . . . 5 (𝑣 = 𝑉 → (𝐹𝑣) = (𝐹𝑉))
74 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
7573, 74oveq12d 7153 . . . 4 (𝑣 = 𝑉 → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝐹𝑉)( ·𝑠𝑀)𝑉))
76 fveq2 6645 . . . . 5 (𝑣 = 𝑊 → (𝐹𝑣) = (𝐹𝑊))
77 id 22 . . . . 5 (𝑣 = 𝑊𝑣 = 𝑊)
7876, 77oveq12d 7153 . . . 4 (𝑣 = 𝑊 → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝐹𝑊)( ·𝑠𝑀)𝑊))
7922, 72, 75, 78gsumpr 19068 . . 3 ((𝑀 ∈ CMnd ∧ (𝑉𝐵𝑊𝐵𝑉𝑊) ∧ (((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵 ∧ ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)) → (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)))
8036, 42, 57, 71, 79syl112anc 1371 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)))
81 lincvalsn.t . . . . . 6 · = ( ·𝑠𝑀)
8281a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → · = ( ·𝑠𝑀))
8382eqcomd 2804 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ( ·𝑠𝑀) = · )
8419fveq1i 6646 . . . . 5 (𝐹𝑉) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉)
85383ad2ant2 1131 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝐵)
86 simpr 488 . . . . . . 7 ((𝑉𝐵𝑋𝑅) → 𝑋𝑅)
87863ad2ant2 1131 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑋𝑅)
88373ad2ant1 1130 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝑊)
8985, 87, 88, 48syl3anc 1368 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
9084, 89syl5eq 2845 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑉) = 𝑋)
91 eqidd 2799 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉 = 𝑉)
9283, 90, 91oveq123d 7156 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) = (𝑋 · 𝑉))
9319fveq1i 6646 . . . . 5 (𝐹𝑊) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊)
94393ad2ant3 1132 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊𝐵)
95 simpr 488 . . . . . . 7 ((𝑊𝐵𝑌𝑅) → 𝑌𝑅)
96953ad2ant3 1132 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑌𝑅)
9794, 96, 88, 63syl3anc 1368 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
9893, 97syl5eq 2845 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = 𝑌)
99 eqidd 2799 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊 = 𝑊)
10083, 98, 99oveq123d 7156 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) = (𝑌 · 𝑊))
10192, 100oveq12d 7153 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))
10233, 80, 1013eqtrd 2837 1 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  𝒫 cpw 4497  {cpr 4527  cop 4531  cmpt 5110  cfv 6324  (class class class)co 7135  m cmap 8389  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561   Σg cgsu 16706  CMndccmn 18898  LModclmod 19627   linC clinc 44813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-linc 44815
This theorem is referenced by:  ldepspr  44882
  Copyright terms: Public domain W3C validator