Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalpr Structured version   Visualization version   GIF version

Theorem lincvalpr 44305
Description: The linear combination over an unordered pair. (Contributed by AV, 16-Apr-2019.)
Hypotheses
Ref Expression
lincvalsn.b 𝐵 = (Base‘𝑀)
lincvalsn.s 𝑆 = (Scalar‘𝑀)
lincvalsn.r 𝑅 = (Base‘𝑆)
lincvalsn.t · = ( ·𝑠𝑀)
lincvalpr.p + = (+g𝑀)
lincvalpr.f 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}
Assertion
Ref Expression
lincvalpr (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))

Proof of Theorem lincvalpr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑀 ∈ LMod)
213ad2ant1 1127 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ LMod)
3 lincvalsn.r . . . . . . . . 9 𝑅 = (Base‘𝑆)
4 lincvalsn.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑀)
54fveq2i 6670 . . . . . . . . 9 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
63, 5eqtri 2849 . . . . . . . 8 𝑅 = (Base‘(Scalar‘𝑀))
76eleq2i 2909 . . . . . . 7 (𝑋𝑅𝑋 ∈ (Base‘(Scalar‘𝑀)))
87biimpi 217 . . . . . 6 (𝑋𝑅𝑋 ∈ (Base‘(Scalar‘𝑀)))
98anim2i 616 . . . . 5 ((𝑉𝐵𝑋𝑅) → (𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))))
1093ad2ant2 1128 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))))
116eleq2i 2909 . . . . . . 7 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
1211biimpi 217 . . . . . 6 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
1312anim2i 616 . . . . 5 ((𝑊𝐵𝑌𝑅) → (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))))
14133ad2ant3 1129 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))))
15 fvexd 6682 . . . . . . 7 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
1615anim2i 616 . . . . . 6 ((𝑉𝑊𝑀 ∈ LMod) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
1716ancoms 459 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
18173ad2ant1 1127 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
19 lincvalpr.f . . . . 5 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}
2019mapprop 44226 . . . 4 (((𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))) ∧ (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))) ∧ (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V)) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉, 𝑊}))
2110, 14, 18, 20syl3anc 1365 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉, 𝑊}))
22 lincvalsn.b . . . . . . . 8 𝐵 = (Base‘𝑀)
2322eleq2i 2909 . . . . . . 7 (𝑉𝐵𝑉 ∈ (Base‘𝑀))
2423biimpi 217 . . . . . 6 (𝑉𝐵𝑉 ∈ (Base‘𝑀))
2524adantr 481 . . . . 5 ((𝑉𝐵𝑋𝑅) → 𝑉 ∈ (Base‘𝑀))
2622eleq2i 2909 . . . . . . 7 (𝑊𝐵𝑊 ∈ (Base‘𝑀))
2726biimpi 217 . . . . . 6 (𝑊𝐵𝑊 ∈ (Base‘𝑀))
2827adantr 481 . . . . 5 ((𝑊𝐵𝑌𝑅) → 𝑊 ∈ (Base‘𝑀))
29 prelpwi 5336 . . . . 5 ((𝑉 ∈ (Base‘𝑀) ∧ 𝑊 ∈ (Base‘𝑀)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
3025, 28, 29syl2an 595 . . . 4 (((𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
31303adant1 1124 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
32 lincval 44296 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉, 𝑊}) ∧ {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
332, 21, 31, 32syl3anc 1365 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
34 lmodcmn 19602 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
3534adantr 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑀 ∈ CMnd)
36353ad2ant1 1127 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ CMnd)
37 simpr 485 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑉𝑊)
38 simpl 483 . . . . 5 ((𝑉𝐵𝑋𝑅) → 𝑉𝐵)
39 simpl 483 . . . . 5 ((𝑊𝐵𝑌𝑅) → 𝑊𝐵)
4037, 38, 393anim123i 1145 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝑊𝑉𝐵𝑊𝐵))
41 3anrot 1094 . . . 4 ((𝑉𝑊𝑉𝐵𝑊𝐵) ↔ (𝑉𝐵𝑊𝐵𝑉𝑊))
4240, 41sylib 219 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝐵𝑊𝐵𝑉𝑊))
4319a1i 11 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩})
4443fveq1d 6669 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝐹𝑉) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉))
45 simprl 767 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑉𝐵)
46 simprr 769 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑋𝑅)
4737adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑉𝑊)
48 fvpr1g 6950 . . . . . . . 8 ((𝑉𝐵𝑋𝑅𝑉𝑊) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
4945, 46, 47, 48syl3anc 1365 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
5044, 49eqtrd 2861 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝐹𝑉) = 𝑋)
5150oveq1d 7163 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) = (𝑋( ·𝑠𝑀)𝑉))
521adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑀 ∈ LMod)
53 eqid 2826 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5422, 4, 53, 3lmodvscl 19571 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝑅𝑉𝐵) → (𝑋( ·𝑠𝑀)𝑉) ∈ 𝐵)
5552, 46, 45, 54syl3anc 1365 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝑋( ·𝑠𝑀)𝑉) ∈ 𝐵)
5651, 55eqeltrd 2918 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
57563adant3 1126 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
5819a1i 11 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩})
5958fveq1d 6669 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊))
60 simprl 767 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊𝐵)
61 simprr 769 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑌𝑅)
6237adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝑊)
63 fvpr2g 6951 . . . . . . . 8 ((𝑊𝐵𝑌𝑅𝑉𝑊) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
6460, 61, 62, 63syl3anc 1365 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
6559, 64eqtrd 2861 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = 𝑌)
6665oveq1d 7163 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) = (𝑌( ·𝑠𝑀)𝑊))
671adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ LMod)
6822, 4, 53, 3lmodvscl 19571 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑌𝑅𝑊𝐵) → (𝑌( ·𝑠𝑀)𝑊) ∈ 𝐵)
6967, 61, 60, 68syl3anc 1365 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝑌( ·𝑠𝑀)𝑊) ∈ 𝐵)
7066, 69eqeltrd 2918 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)
71703adant2 1125 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)
72 lincvalpr.p . . . 4 + = (+g𝑀)
73 fveq2 6667 . . . . 5 (𝑣 = 𝑉 → (𝐹𝑣) = (𝐹𝑉))
74 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
7573, 74oveq12d 7166 . . . 4 (𝑣 = 𝑉 → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝐹𝑉)( ·𝑠𝑀)𝑉))
76 fveq2 6667 . . . . 5 (𝑣 = 𝑊 → (𝐹𝑣) = (𝐹𝑊))
77 id 22 . . . . 5 (𝑣 = 𝑊𝑣 = 𝑊)
7876, 77oveq12d 7166 . . . 4 (𝑣 = 𝑊 → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝐹𝑊)( ·𝑠𝑀)𝑊))
7922, 72, 75, 78gsumpr 18995 . . 3 ((𝑀 ∈ CMnd ∧ (𝑉𝐵𝑊𝐵𝑉𝑊) ∧ (((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵 ∧ ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)) → (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)))
8036, 42, 57, 71, 79syl112anc 1368 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)))
81 lincvalsn.t . . . . . 6 · = ( ·𝑠𝑀)
8281a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → · = ( ·𝑠𝑀))
8382eqcomd 2832 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ( ·𝑠𝑀) = · )
8419fveq1i 6668 . . . . 5 (𝐹𝑉) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉)
85383ad2ant2 1128 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝐵)
86 simpr 485 . . . . . . 7 ((𝑉𝐵𝑋𝑅) → 𝑋𝑅)
87863ad2ant2 1128 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑋𝑅)
88373ad2ant1 1127 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝑊)
8985, 87, 88, 48syl3anc 1365 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
9084, 89syl5eq 2873 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑉) = 𝑋)
91 eqidd 2827 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉 = 𝑉)
9283, 90, 91oveq123d 7169 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) = (𝑋 · 𝑉))
9319fveq1i 6668 . . . . 5 (𝐹𝑊) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊)
94393ad2ant3 1129 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊𝐵)
95 simpr 485 . . . . . . 7 ((𝑊𝐵𝑌𝑅) → 𝑌𝑅)
96953ad2ant3 1129 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑌𝑅)
9794, 96, 88, 63syl3anc 1365 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
9893, 97syl5eq 2873 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = 𝑌)
99 eqidd 2827 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊 = 𝑊)
10083, 98, 99oveq123d 7169 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) = (𝑌 · 𝑊))
10192, 100oveq12d 7166 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))
10233, 80, 1013eqtrd 2865 1 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  Vcvv 3500  𝒫 cpw 4542  {cpr 4566  cop 4570  cmpt 5143  cfv 6352  (class class class)co 7148  m cmap 8396  Basecbs 16473  +gcplusg 16555  Scalarcsca 16558   ·𝑠 cvsca 16559   Σg cgsu 16704  CMndccmn 18826  LModclmod 19554   linC clinc 44291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-seq 13360  df-hash 13681  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-0g 16705  df-gsum 16706  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-grp 18036  df-minusg 18037  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-abl 18829  df-mgp 19160  df-ur 19172  df-ring 19219  df-lmod 19556  df-linc 44293
This theorem is referenced by:  ldepspr  44360
  Copyright terms: Public domain W3C validator