Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem3 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem3 46573
Description: Lemma 3 for zlmodzxzldep 46575. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem3 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)

Proof of Theorem zlmodzxzldeplem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlmodzxzldep.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
2 ovex 7390 . . . 4 (ℤring freeLMod {0, 1}) ∈ V
31, 2eqeltri 2834 . . 3 𝑍 ∈ V
4 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
5 zlmodzxzldep.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
6 zlmodzxzldeplem.f . . . . 5 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
71, 4, 5, 6zlmodzxzldeplem1 46571 . . . 4 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})
81zlmodzxzlmod 46420 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
9 simpr 485 . . . . . . . . 9 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → ℤring = (Scalar‘𝑍))
109eqcomd 2742 . . . . . . . 8 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → (Scalar‘𝑍) = ℤring)
118, 10ax-mp 5 . . . . . . 7 (Scalar‘𝑍) = ℤring
1211fveq2i 6845 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
13 zringbas 20875 . . . . . . 7 ℤ = (Base‘ℤring)
1413eqcomi 2745 . . . . . 6 (Base‘ℤring) = ℤ
1512, 14eqtri 2764 . . . . 5 (Base‘(Scalar‘𝑍)) = ℤ
1615oveq1i 7367 . . . 4 ((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵}) = (ℤ ↑m {𝐴, 𝐵})
177, 16eleqtrri 2837 . . 3 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵})
18 3z 12536 . . . . . 6 3 ∈ ℤ
19 6nn 12242 . . . . . . 7 6 ∈ ℕ
2019nnzi 12527 . . . . . 6 6 ∈ ℤ
211zlmodzxzel 46421 . . . . . 6 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
2218, 20, 21mp2an 690 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
23 2z 12535 . . . . . 6 2 ∈ ℤ
24 4z 12537 . . . . . 6 4 ∈ ℤ
251zlmodzxzel 46421 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2623, 24, 25mp2an 690 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
274eleq1i 2828 . . . . . 6 (𝐴 ∈ (Base‘𝑍) ↔ {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
285eleq1i 2828 . . . . . 6 (𝐵 ∈ (Base‘𝑍) ↔ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2927, 28anbi12i 627 . . . . 5 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) ↔ ({⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍) ∧ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)))
3022, 26, 29mpbir2an 709 . . . 4 (𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍))
31 prelpwi 5404 . . . 4 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) → {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍))
3230, 31ax-mp 5 . . 3 {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)
33 lincval 46480 . . 3 ((𝑍 ∈ V ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵}) ∧ {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)) → (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))))
343, 17, 32, 33mp3an 1461 . 2 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥)))
35 lmodcmn 20370 . . . . 5 (𝑍 ∈ LMod → 𝑍 ∈ CMnd)
3635adantr 481 . . . 4 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ CMnd)
378, 36ax-mp 5 . . 3 𝑍 ∈ CMnd
38 prex 5389 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
394, 38eqeltri 2834 . . . 4 𝐴 ∈ V
40 prex 5389 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
415, 40eqeltri 2834 . . . 4 𝐵 ∈ V
421, 4, 5zlmodzxzldeplem 46569 . . . 4 𝐴𝐵
4339, 41, 423pm3.2i 1339 . . 3 (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵)
448simpli 484 . . . . 5 𝑍 ∈ LMod
45 elmapi 8787 . . . . . . 7 (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) → 𝐹:{𝐴, 𝐵}⟶ℤ)
4639prid1 4723 . . . . . . . 8 𝐴 ∈ {𝐴, 𝐵}
47 ffvelcdm 7032 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ ℤ)
4846, 47mpan2 689 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐴) ∈ ℤ)
497, 45, 48mp2b 10 . . . . . 6 (𝐹𝐴) ∈ ℤ
508, 9ax-mp 5 . . . . . . . . 9 ring = (Scalar‘𝑍)
5150eqcomi 2745 . . . . . . . 8 (Scalar‘𝑍) = ℤring
5251fveq2i 6845 . . . . . . 7 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
5352, 14eqtri 2764 . . . . . 6 (Base‘(Scalar‘𝑍)) = ℤ
5449, 53eleqtrri 2837 . . . . 5 (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍))
554, 22eqeltri 2834 . . . . 5 𝐴 ∈ (Base‘𝑍)
56 eqid 2736 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
57 eqid 2736 . . . . . 6 (Scalar‘𝑍) = (Scalar‘𝑍)
58 eqid 2736 . . . . . 6 ( ·𝑠𝑍) = ( ·𝑠𝑍)
59 eqid 2736 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
6056, 57, 58, 59lmodvscl 20339 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐴 ∈ (Base‘𝑍)) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍))
6144, 54, 55, 60mp3an 1461 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍)
6241prid2 4724 . . . . . . . 8 𝐵 ∈ {𝐴, 𝐵}
63 ffvelcdm 7032 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ ℤ)
6462, 63mpan2 689 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐵) ∈ ℤ)
657, 45, 64mp2b 10 . . . . . 6 (𝐹𝐵) ∈ ℤ
6665, 53eleqtrri 2837 . . . . 5 (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍))
675, 26eqeltri 2834 . . . . 5 𝐵 ∈ (Base‘𝑍)
6856, 57, 58, 59lmodvscl 20339 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐵 ∈ (Base‘𝑍)) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
6944, 66, 67, 68mp3an 1461 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍)
7061, 69pm3.2i 471 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
71 eqid 2736 . . . 4 (+g𝑍) = (+g𝑍)
72 fveq2 6842 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
73 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
7472, 73oveq12d 7375 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
75 fveq2 6842 . . . . 5 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
76 id 22 . . . . 5 (𝑥 = 𝐵𝑥 = 𝐵)
7775, 76oveq12d 7375 . . . 4 (𝑥 = 𝐵 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
7856, 71, 74, 77gsumpr 19732 . . 3 ((𝑍 ∈ CMnd ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) ∧ (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))) → (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)))
7937, 43, 70, 78mp3an 1461 . 2 (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵))
806fveq1i 6843 . . . . . 6 (𝐹𝐴) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴)
81 2ex 12230 . . . . . . . 8 2 ∈ V
8239, 81fvpr1 7139 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
8342, 82ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2
8480, 83eqtri 2764 . . . . 5 (𝐹𝐴) = 2
8584oveq1i 7367 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) = (2( ·𝑠𝑍)𝐴)
866fveq1i 6843 . . . . . 6 (𝐹𝐵) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵)
87 negex 11399 . . . . . . . 8 -3 ∈ V
8841, 87fvpr2 7141 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3)
8942, 88ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3
9086, 89eqtri 2764 . . . . 5 (𝐹𝐵) = -3
9190oveq1i 7367 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) = (-3( ·𝑠𝑍)𝐵)
9285, 91oveq12i 7369 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵))
93 eqid 2736 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
941, 93zlmodzxz0 46422 . . . . 5 {⟨0, 0⟩, ⟨1, 0⟩} = (0g𝑍)
9594eqcomi 2745 . . . 4 (0g𝑍) = {⟨0, 0⟩, ⟨1, 0⟩}
961, 4, 5, 95, 71, 58zlmodzxzequap 46570 . . 3 ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵)) = (0g𝑍)
9792, 96eqtri 2764 . 2 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = (0g𝑍)
9834, 79, 973eqtri 2768 1 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  𝒫 cpw 4560  {cpr 4588  cop 4592  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  0cc0 11051  1c1 11052  -cneg 11386  2c2 12208  3c3 12209  4c4 12210  6c6 12212  cz 12499  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321   Σg cgsu 17322  CMndccmn 19562  LModclmod 20322  ringczring 20869   freeLMod cfrlm 21152   linC clinc 46475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-zring 20870  df-dsmm 21138  df-frlm 21153  df-linc 46477
This theorem is referenced by:  zlmodzxzldep  46575
  Copyright terms: Public domain W3C validator