Step | Hyp | Ref
| Expression |
1 | | zlmodzxzldep.z |
. . . 4
⊢ 𝑍 = (ℤring
freeLMod {0, 1}) |
2 | | ovex 7288 |
. . . 4
⊢
(ℤring freeLMod {0, 1}) ∈ V |
3 | 1, 2 | eqeltri 2835 |
. . 3
⊢ 𝑍 ∈ V |
4 | | zlmodzxzldep.a |
. . . . 5
⊢ 𝐴 = {〈0, 3〉, 〈1,
6〉} |
5 | | zlmodzxzldep.b |
. . . . 5
⊢ 𝐵 = {〈0, 2〉, 〈1,
4〉} |
6 | | zlmodzxzldeplem.f |
. . . . 5
⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} |
7 | 1, 4, 5, 6 | zlmodzxzldeplem1 45729 |
. . . 4
⊢ 𝐹 ∈ (ℤ
↑m {𝐴,
𝐵}) |
8 | 1 | zlmodzxzlmod 45578 |
. . . . . . . 8
⊢ (𝑍 ∈ LMod ∧
ℤring = (Scalar‘𝑍)) |
9 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑍 ∈ LMod ∧
ℤring = (Scalar‘𝑍)) → ℤring =
(Scalar‘𝑍)) |
10 | 9 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝑍 ∈ LMod ∧
ℤring = (Scalar‘𝑍)) → (Scalar‘𝑍) = ℤring) |
11 | 8, 10 | ax-mp 5 |
. . . . . . 7
⊢
(Scalar‘𝑍) =
ℤring |
12 | 11 | fveq2i 6759 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑍)) =
(Base‘ℤring) |
13 | | zringbas 20588 |
. . . . . . 7
⊢ ℤ =
(Base‘ℤring) |
14 | 13 | eqcomi 2747 |
. . . . . 6
⊢
(Base‘ℤring) = ℤ |
15 | 12, 14 | eqtri 2766 |
. . . . 5
⊢
(Base‘(Scalar‘𝑍)) = ℤ |
16 | 15 | oveq1i 7265 |
. . . 4
⊢
((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵}) = (ℤ ↑m {𝐴, 𝐵}) |
17 | 7, 16 | eleqtrri 2838 |
. . 3
⊢ 𝐹 ∈
((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵}) |
18 | | 3z 12283 |
. . . . . 6
⊢ 3 ∈
ℤ |
19 | | 6nn 11992 |
. . . . . . 7
⊢ 6 ∈
ℕ |
20 | 19 | nnzi 12274 |
. . . . . 6
⊢ 6 ∈
ℤ |
21 | 1 | zlmodzxzel 45579 |
. . . . . 6
⊢ ((3
∈ ℤ ∧ 6 ∈ ℤ) → {〈0, 3〉, 〈1,
6〉} ∈ (Base‘𝑍)) |
22 | 18, 20, 21 | mp2an 688 |
. . . . 5
⊢ {〈0,
3〉, 〈1, 6〉} ∈ (Base‘𝑍) |
23 | | 2z 12282 |
. . . . . 6
⊢ 2 ∈
ℤ |
24 | | 4z 12284 |
. . . . . 6
⊢ 4 ∈
ℤ |
25 | 1 | zlmodzxzel 45579 |
. . . . . 6
⊢ ((2
∈ ℤ ∧ 4 ∈ ℤ) → {〈0, 2〉, 〈1,
4〉} ∈ (Base‘𝑍)) |
26 | 23, 24, 25 | mp2an 688 |
. . . . 5
⊢ {〈0,
2〉, 〈1, 4〉} ∈ (Base‘𝑍) |
27 | 4 | eleq1i 2829 |
. . . . . 6
⊢ (𝐴 ∈ (Base‘𝑍) ↔ {〈0, 3〉,
〈1, 6〉} ∈ (Base‘𝑍)) |
28 | 5 | eleq1i 2829 |
. . . . . 6
⊢ (𝐵 ∈ (Base‘𝑍) ↔ {〈0, 2〉,
〈1, 4〉} ∈ (Base‘𝑍)) |
29 | 27, 28 | anbi12i 626 |
. . . . 5
⊢ ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) ↔ ({〈0, 3〉, 〈1,
6〉} ∈ (Base‘𝑍) ∧ {〈0, 2〉, 〈1, 4〉}
∈ (Base‘𝑍))) |
30 | 22, 26, 29 | mpbir2an 707 |
. . . 4
⊢ (𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) |
31 | | prelpwi 5357 |
. . . 4
⊢ ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) → {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)) |
32 | 30, 31 | ax-mp 5 |
. . 3
⊢ {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍) |
33 | | lincval 45638 |
. . 3
⊢ ((𝑍 ∈ V ∧ 𝐹 ∈
((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵}) ∧ {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)) → (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑍)𝑥)))) |
34 | 3, 17, 32, 33 | mp3an 1459 |
. 2
⊢ (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑍)𝑥))) |
35 | | lmodcmn 20086 |
. . . . 5
⊢ (𝑍 ∈ LMod → 𝑍 ∈ CMnd) |
36 | 35 | adantr 480 |
. . . 4
⊢ ((𝑍 ∈ LMod ∧
ℤring = (Scalar‘𝑍)) → 𝑍 ∈ CMnd) |
37 | 8, 36 | ax-mp 5 |
. . 3
⊢ 𝑍 ∈ CMnd |
38 | | prex 5350 |
. . . . 5
⊢ {〈0,
3〉, 〈1, 6〉} ∈ V |
39 | 4, 38 | eqeltri 2835 |
. . . 4
⊢ 𝐴 ∈ V |
40 | | prex 5350 |
. . . . 5
⊢ {〈0,
2〉, 〈1, 4〉} ∈ V |
41 | 5, 40 | eqeltri 2835 |
. . . 4
⊢ 𝐵 ∈ V |
42 | 1, 4, 5 | zlmodzxzldeplem 45727 |
. . . 4
⊢ 𝐴 ≠ 𝐵 |
43 | 39, 41, 42 | 3pm3.2i 1337 |
. . 3
⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) |
44 | 8 | simpli 483 |
. . . . 5
⊢ 𝑍 ∈ LMod |
45 | | elmapi 8595 |
. . . . . . 7
⊢ (𝐹 ∈ (ℤ
↑m {𝐴,
𝐵}) → 𝐹:{𝐴, 𝐵}⟶ℤ) |
46 | 39 | prid1 4695 |
. . . . . . . 8
⊢ 𝐴 ∈ {𝐴, 𝐵} |
47 | | ffvelrn 6941 |
. . . . . . . 8
⊢ ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐴 ∈ {𝐴, 𝐵}) → (𝐹‘𝐴) ∈ ℤ) |
48 | 46, 47 | mpan2 687 |
. . . . . . 7
⊢ (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹‘𝐴) ∈ ℤ) |
49 | 7, 45, 48 | mp2b 10 |
. . . . . 6
⊢ (𝐹‘𝐴) ∈ ℤ |
50 | 8, 9 | ax-mp 5 |
. . . . . . . . 9
⊢
ℤring = (Scalar‘𝑍) |
51 | 50 | eqcomi 2747 |
. . . . . . . 8
⊢
(Scalar‘𝑍) =
ℤring |
52 | 51 | fveq2i 6759 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑍)) =
(Base‘ℤring) |
53 | 52, 14 | eqtri 2766 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑍)) = ℤ |
54 | 49, 53 | eleqtrri 2838 |
. . . . 5
⊢ (𝐹‘𝐴) ∈ (Base‘(Scalar‘𝑍)) |
55 | 4, 22 | eqeltri 2835 |
. . . . 5
⊢ 𝐴 ∈ (Base‘𝑍) |
56 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑍) =
(Base‘𝑍) |
57 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑍) =
(Scalar‘𝑍) |
58 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑍) = ( ·𝑠
‘𝑍) |
59 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍)) |
60 | 56, 57, 58, 59 | lmodvscl 20055 |
. . . . 5
⊢ ((𝑍 ∈ LMod ∧ (𝐹‘𝐴) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐴 ∈ (Base‘𝑍)) → ((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴) ∈ (Base‘𝑍)) |
61 | 44, 54, 55, 60 | mp3an 1459 |
. . . 4
⊢ ((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴) ∈ (Base‘𝑍) |
62 | 41 | prid2 4696 |
. . . . . . . 8
⊢ 𝐵 ∈ {𝐴, 𝐵} |
63 | | ffvelrn 6941 |
. . . . . . . 8
⊢ ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐵 ∈ {𝐴, 𝐵}) → (𝐹‘𝐵) ∈ ℤ) |
64 | 62, 63 | mpan2 687 |
. . . . . . 7
⊢ (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹‘𝐵) ∈ ℤ) |
65 | 7, 45, 64 | mp2b 10 |
. . . . . 6
⊢ (𝐹‘𝐵) ∈ ℤ |
66 | 65, 53 | eleqtrri 2838 |
. . . . 5
⊢ (𝐹‘𝐵) ∈ (Base‘(Scalar‘𝑍)) |
67 | 5, 26 | eqeltri 2835 |
. . . . 5
⊢ 𝐵 ∈ (Base‘𝑍) |
68 | 56, 57, 58, 59 | lmodvscl 20055 |
. . . . 5
⊢ ((𝑍 ∈ LMod ∧ (𝐹‘𝐵) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐵 ∈ (Base‘𝑍)) → ((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵) ∈ (Base‘𝑍)) |
69 | 44, 66, 67, 68 | mp3an 1459 |
. . . 4
⊢ ((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵) ∈ (Base‘𝑍) |
70 | 61, 69 | pm3.2i 470 |
. . 3
⊢ (((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵) ∈ (Base‘𝑍)) |
71 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑍) = (+g‘𝑍) |
72 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
73 | | id 22 |
. . . . 5
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
74 | 72, 73 | oveq12d 7273 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥)( ·𝑠
‘𝑍)𝑥) = ((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴)) |
75 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) |
76 | | id 22 |
. . . . 5
⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) |
77 | 75, 76 | oveq12d 7273 |
. . . 4
⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥)( ·𝑠
‘𝑍)𝑥) = ((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵)) |
78 | 56, 71, 74, 77 | gsumpr 19471 |
. . 3
⊢ ((𝑍 ∈ CMnd ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) ∧ (((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵) ∈ (Base‘𝑍))) → (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑍)𝑥))) = (((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴)(+g‘𝑍)((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵))) |
79 | 37, 43, 70, 78 | mp3an 1459 |
. 2
⊢ (𝑍 Σg
(𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹‘𝑥)( ·𝑠
‘𝑍)𝑥))) = (((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴)(+g‘𝑍)((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵)) |
80 | 6 | fveq1i 6757 |
. . . . . 6
⊢ (𝐹‘𝐴) = ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) |
81 | | 2ex 11980 |
. . . . . . . 8
⊢ 2 ∈
V |
82 | 39, 81 | fvpr1 7047 |
. . . . . . 7
⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) = 2) |
83 | 42, 82 | ax-mp 5 |
. . . . . 6
⊢
({〈𝐴, 2〉,
〈𝐵,
-3〉}‘𝐴) =
2 |
84 | 80, 83 | eqtri 2766 |
. . . . 5
⊢ (𝐹‘𝐴) = 2 |
85 | 84 | oveq1i 7265 |
. . . 4
⊢ ((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴) = (2( ·𝑠
‘𝑍)𝐴) |
86 | 6 | fveq1i 6757 |
. . . . . 6
⊢ (𝐹‘𝐵) = ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐵) |
87 | | negex 11149 |
. . . . . . . 8
⊢ -3 ∈
V |
88 | 41, 87 | fvpr2 7049 |
. . . . . . 7
⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐵) = -3) |
89 | 42, 88 | ax-mp 5 |
. . . . . 6
⊢
({〈𝐴, 2〉,
〈𝐵,
-3〉}‘𝐵) =
-3 |
90 | 86, 89 | eqtri 2766 |
. . . . 5
⊢ (𝐹‘𝐵) = -3 |
91 | 90 | oveq1i 7265 |
. . . 4
⊢ ((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵) = (-3( ·𝑠
‘𝑍)𝐵) |
92 | 85, 91 | oveq12i 7267 |
. . 3
⊢ (((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴)(+g‘𝑍)((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵)) = ((2(
·𝑠 ‘𝑍)𝐴)(+g‘𝑍)(-3( ·𝑠
‘𝑍)𝐵)) |
93 | | eqid 2738 |
. . . . . 6
⊢ {〈0,
0〉, 〈1, 0〉} = {〈0, 0〉, 〈1,
0〉} |
94 | 1, 93 | zlmodzxz0 45580 |
. . . . 5
⊢ {〈0,
0〉, 〈1, 0〉} = (0g‘𝑍) |
95 | 94 | eqcomi 2747 |
. . . 4
⊢
(0g‘𝑍) = {〈0, 0〉, 〈1,
0〉} |
96 | 1, 4, 5, 95, 71, 58 | zlmodzxzequap 45728 |
. . 3
⊢ ((2(
·𝑠 ‘𝑍)𝐴)(+g‘𝑍)(-3( ·𝑠
‘𝑍)𝐵)) = (0g‘𝑍) |
97 | 92, 96 | eqtri 2766 |
. 2
⊢ (((𝐹‘𝐴)( ·𝑠
‘𝑍)𝐴)(+g‘𝑍)((𝐹‘𝐵)( ·𝑠
‘𝑍)𝐵)) = (0g‘𝑍) |
98 | 34, 79, 97 | 3eqtri 2770 |
1
⊢ (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g‘𝑍) |