Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem3 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem3 44911
Description: Lemma 3 for zlmodzxzldep 44913. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem3 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)

Proof of Theorem zlmodzxzldeplem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlmodzxzldep.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
2 ovex 7168 . . . 4 (ℤring freeLMod {0, 1}) ∈ V
31, 2eqeltri 2886 . . 3 𝑍 ∈ V
4 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
5 zlmodzxzldep.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
6 zlmodzxzldeplem.f . . . . 5 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
71, 4, 5, 6zlmodzxzldeplem1 44909 . . . 4 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})
81zlmodzxzlmod 44756 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
9 simpr 488 . . . . . . . . 9 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → ℤring = (Scalar‘𝑍))
109eqcomd 2804 . . . . . . . 8 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → (Scalar‘𝑍) = ℤring)
118, 10ax-mp 5 . . . . . . 7 (Scalar‘𝑍) = ℤring
1211fveq2i 6648 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
13 zringbas 20169 . . . . . . 7 ℤ = (Base‘ℤring)
1413eqcomi 2807 . . . . . 6 (Base‘ℤring) = ℤ
1512, 14eqtri 2821 . . . . 5 (Base‘(Scalar‘𝑍)) = ℤ
1615oveq1i 7145 . . . 4 ((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵}) = (ℤ ↑m {𝐴, 𝐵})
177, 16eleqtrri 2889 . . 3 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵})
18 3z 12003 . . . . . 6 3 ∈ ℤ
19 6nn 11714 . . . . . . 7 6 ∈ ℕ
2019nnzi 11994 . . . . . 6 6 ∈ ℤ
211zlmodzxzel 44757 . . . . . 6 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
2218, 20, 21mp2an 691 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
23 2z 12002 . . . . . 6 2 ∈ ℤ
24 4z 12004 . . . . . 6 4 ∈ ℤ
251zlmodzxzel 44757 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2623, 24, 25mp2an 691 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
274eleq1i 2880 . . . . . 6 (𝐴 ∈ (Base‘𝑍) ↔ {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
285eleq1i 2880 . . . . . 6 (𝐵 ∈ (Base‘𝑍) ↔ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2927, 28anbi12i 629 . . . . 5 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) ↔ ({⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍) ∧ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)))
3022, 26, 29mpbir2an 710 . . . 4 (𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍))
31 prelpwi 5305 . . . 4 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) → {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍))
3230, 31ax-mp 5 . . 3 {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)
33 lincval 44818 . . 3 ((𝑍 ∈ V ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵}) ∧ {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)) → (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))))
343, 17, 32, 33mp3an 1458 . 2 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥)))
35 lmodcmn 19675 . . . . 5 (𝑍 ∈ LMod → 𝑍 ∈ CMnd)
3635adantr 484 . . . 4 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ CMnd)
378, 36ax-mp 5 . . 3 𝑍 ∈ CMnd
38 prex 5298 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
394, 38eqeltri 2886 . . . 4 𝐴 ∈ V
40 prex 5298 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
415, 40eqeltri 2886 . . . 4 𝐵 ∈ V
421, 4, 5zlmodzxzldeplem 44907 . . . 4 𝐴𝐵
4339, 41, 423pm3.2i 1336 . . 3 (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵)
448simpli 487 . . . . 5 𝑍 ∈ LMod
45 elmapi 8411 . . . . . . 7 (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) → 𝐹:{𝐴, 𝐵}⟶ℤ)
4639prid1 4658 . . . . . . . 8 𝐴 ∈ {𝐴, 𝐵}
47 ffvelrn 6826 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ ℤ)
4846, 47mpan2 690 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐴) ∈ ℤ)
497, 45, 48mp2b 10 . . . . . 6 (𝐹𝐴) ∈ ℤ
508, 9ax-mp 5 . . . . . . . . 9 ring = (Scalar‘𝑍)
5150eqcomi 2807 . . . . . . . 8 (Scalar‘𝑍) = ℤring
5251fveq2i 6648 . . . . . . 7 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
5352, 14eqtri 2821 . . . . . 6 (Base‘(Scalar‘𝑍)) = ℤ
5449, 53eleqtrri 2889 . . . . 5 (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍))
554, 22eqeltri 2886 . . . . 5 𝐴 ∈ (Base‘𝑍)
56 eqid 2798 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
57 eqid 2798 . . . . . 6 (Scalar‘𝑍) = (Scalar‘𝑍)
58 eqid 2798 . . . . . 6 ( ·𝑠𝑍) = ( ·𝑠𝑍)
59 eqid 2798 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
6056, 57, 58, 59lmodvscl 19644 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐴 ∈ (Base‘𝑍)) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍))
6144, 54, 55, 60mp3an 1458 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍)
6241prid2 4659 . . . . . . . 8 𝐵 ∈ {𝐴, 𝐵}
63 ffvelrn 6826 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ ℤ)
6462, 63mpan2 690 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐵) ∈ ℤ)
657, 45, 64mp2b 10 . . . . . 6 (𝐹𝐵) ∈ ℤ
6665, 53eleqtrri 2889 . . . . 5 (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍))
675, 26eqeltri 2886 . . . . 5 𝐵 ∈ (Base‘𝑍)
6856, 57, 58, 59lmodvscl 19644 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐵 ∈ (Base‘𝑍)) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
6944, 66, 67, 68mp3an 1458 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍)
7061, 69pm3.2i 474 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
71 eqid 2798 . . . 4 (+g𝑍) = (+g𝑍)
72 fveq2 6645 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
73 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
7472, 73oveq12d 7153 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
75 fveq2 6645 . . . . 5 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
76 id 22 . . . . 5 (𝑥 = 𝐵𝑥 = 𝐵)
7775, 76oveq12d 7153 . . . 4 (𝑥 = 𝐵 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
7856, 71, 74, 77gsumpr 19068 . . 3 ((𝑍 ∈ CMnd ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) ∧ (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))) → (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)))
7937, 43, 70, 78mp3an 1458 . 2 (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵))
806fveq1i 6646 . . . . . 6 (𝐹𝐴) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴)
81 2ex 11702 . . . . . . . 8 2 ∈ V
8239, 81fvpr1 6929 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
8342, 82ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2
8480, 83eqtri 2821 . . . . 5 (𝐹𝐴) = 2
8584oveq1i 7145 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) = (2( ·𝑠𝑍)𝐴)
866fveq1i 6646 . . . . . 6 (𝐹𝐵) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵)
87 negex 10873 . . . . . . . 8 -3 ∈ V
8841, 87fvpr2 6930 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3)
8942, 88ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3
9086, 89eqtri 2821 . . . . 5 (𝐹𝐵) = -3
9190oveq1i 7145 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) = (-3( ·𝑠𝑍)𝐵)
9285, 91oveq12i 7147 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵))
93 eqid 2798 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
941, 93zlmodzxz0 44758 . . . . 5 {⟨0, 0⟩, ⟨1, 0⟩} = (0g𝑍)
9594eqcomi 2807 . . . 4 (0g𝑍) = {⟨0, 0⟩, ⟨1, 0⟩}
961, 4, 5, 95, 71, 58zlmodzxzequap 44908 . . 3 ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵)) = (0g𝑍)
9792, 96eqtri 2821 . 2 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = (0g𝑍)
9834, 79, 973eqtri 2825 1 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  𝒫 cpw 4497  {cpr 4527  cop 4531  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  0cc0 10526  1c1 10527  -cneg 10860  2c2 11680  3c3 11681  4c4 11682  6c6 11684  cz 11969  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  CMndccmn 18898  LModclmod 19627  ringzring 20163   freeLMod cfrlm 20435   linC clinc 44813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-zring 20164  df-dsmm 20421  df-frlm 20436  df-linc 44815
This theorem is referenced by:  zlmodzxzldep  44913
  Copyright terms: Public domain W3C validator