Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem3 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem3 47753
Description: Lemma 3 for zlmodzxzldep 47755. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem3 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)

Proof of Theorem zlmodzxzldeplem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlmodzxzldep.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
2 ovex 7452 . . . 4 (ℤring freeLMod {0, 1}) ∈ V
31, 2eqeltri 2821 . . 3 𝑍 ∈ V
4 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
5 zlmodzxzldep.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
6 zlmodzxzldeplem.f . . . . 5 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
71, 4, 5, 6zlmodzxzldeplem1 47751 . . . 4 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})
81zlmodzxzlmod 47601 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
9 simpr 483 . . . . . . . . 9 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → ℤring = (Scalar‘𝑍))
109eqcomd 2731 . . . . . . . 8 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → (Scalar‘𝑍) = ℤring)
118, 10ax-mp 5 . . . . . . 7 (Scalar‘𝑍) = ℤring
1211fveq2i 6899 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
13 zringbas 21396 . . . . . . 7 ℤ = (Base‘ℤring)
1413eqcomi 2734 . . . . . 6 (Base‘ℤring) = ℤ
1512, 14eqtri 2753 . . . . 5 (Base‘(Scalar‘𝑍)) = ℤ
1615oveq1i 7429 . . . 4 ((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵}) = (ℤ ↑m {𝐴, 𝐵})
177, 16eleqtrri 2824 . . 3 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵})
18 3z 12628 . . . . . 6 3 ∈ ℤ
19 6nn 12334 . . . . . . 7 6 ∈ ℕ
2019nnzi 12619 . . . . . 6 6 ∈ ℤ
211zlmodzxzel 47602 . . . . . 6 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
2218, 20, 21mp2an 690 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
23 2z 12627 . . . . . 6 2 ∈ ℤ
24 4z 12629 . . . . . 6 4 ∈ ℤ
251zlmodzxzel 47602 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2623, 24, 25mp2an 690 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
274eleq1i 2816 . . . . . 6 (𝐴 ∈ (Base‘𝑍) ↔ {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
285eleq1i 2816 . . . . . 6 (𝐵 ∈ (Base‘𝑍) ↔ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2927, 28anbi12i 626 . . . . 5 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) ↔ ({⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍) ∧ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)))
3022, 26, 29mpbir2an 709 . . . 4 (𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍))
31 prelpwi 5449 . . . 4 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) → {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍))
3230, 31ax-mp 5 . . 3 {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)
33 lincval 47660 . . 3 ((𝑍 ∈ V ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑m {𝐴, 𝐵}) ∧ {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)) → (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))))
343, 17, 32, 33mp3an 1457 . 2 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥)))
35 lmodcmn 20805 . . . . 5 (𝑍 ∈ LMod → 𝑍 ∈ CMnd)
3635adantr 479 . . . 4 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ CMnd)
378, 36ax-mp 5 . . 3 𝑍 ∈ CMnd
38 prex 5434 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
394, 38eqeltri 2821 . . . 4 𝐴 ∈ V
40 prex 5434 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
415, 40eqeltri 2821 . . . 4 𝐵 ∈ V
421, 4, 5zlmodzxzldeplem 47749 . . . 4 𝐴𝐵
4339, 41, 423pm3.2i 1336 . . 3 (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵)
448simpli 482 . . . . 5 𝑍 ∈ LMod
45 elmapi 8868 . . . . . . 7 (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) → 𝐹:{𝐴, 𝐵}⟶ℤ)
4639prid1 4768 . . . . . . . 8 𝐴 ∈ {𝐴, 𝐵}
47 ffvelcdm 7090 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ ℤ)
4846, 47mpan2 689 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐴) ∈ ℤ)
497, 45, 48mp2b 10 . . . . . 6 (𝐹𝐴) ∈ ℤ
508, 9ax-mp 5 . . . . . . . . 9 ring = (Scalar‘𝑍)
5150eqcomi 2734 . . . . . . . 8 (Scalar‘𝑍) = ℤring
5251fveq2i 6899 . . . . . . 7 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
5352, 14eqtri 2753 . . . . . 6 (Base‘(Scalar‘𝑍)) = ℤ
5449, 53eleqtrri 2824 . . . . 5 (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍))
554, 22eqeltri 2821 . . . . 5 𝐴 ∈ (Base‘𝑍)
56 eqid 2725 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
57 eqid 2725 . . . . . 6 (Scalar‘𝑍) = (Scalar‘𝑍)
58 eqid 2725 . . . . . 6 ( ·𝑠𝑍) = ( ·𝑠𝑍)
59 eqid 2725 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
6056, 57, 58, 59lmodvscl 20773 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐴 ∈ (Base‘𝑍)) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍))
6144, 54, 55, 60mp3an 1457 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍)
6241prid2 4769 . . . . . . . 8 𝐵 ∈ {𝐴, 𝐵}
63 ffvelcdm 7090 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ ℤ)
6462, 63mpan2 689 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐵) ∈ ℤ)
657, 45, 64mp2b 10 . . . . . 6 (𝐹𝐵) ∈ ℤ
6665, 53eleqtrri 2824 . . . . 5 (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍))
675, 26eqeltri 2821 . . . . 5 𝐵 ∈ (Base‘𝑍)
6856, 57, 58, 59lmodvscl 20773 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐵 ∈ (Base‘𝑍)) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
6944, 66, 67, 68mp3an 1457 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍)
7061, 69pm3.2i 469 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
71 eqid 2725 . . . 4 (+g𝑍) = (+g𝑍)
72 fveq2 6896 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
73 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
7472, 73oveq12d 7437 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
75 fveq2 6896 . . . . 5 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
76 id 22 . . . . 5 (𝑥 = 𝐵𝑥 = 𝐵)
7775, 76oveq12d 7437 . . . 4 (𝑥 = 𝐵 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
7856, 71, 74, 77gsumpr 19922 . . 3 ((𝑍 ∈ CMnd ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) ∧ (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))) → (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)))
7937, 43, 70, 78mp3an 1457 . 2 (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵))
806fveq1i 6897 . . . . . 6 (𝐹𝐴) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴)
81 2ex 12322 . . . . . . . 8 2 ∈ V
8239, 81fvpr1 7202 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
8342, 82ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2
8480, 83eqtri 2753 . . . . 5 (𝐹𝐴) = 2
8584oveq1i 7429 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) = (2( ·𝑠𝑍)𝐴)
866fveq1i 6897 . . . . . 6 (𝐹𝐵) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵)
87 negex 11490 . . . . . . . 8 -3 ∈ V
8841, 87fvpr2 7204 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3)
8942, 88ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3
9086, 89eqtri 2753 . . . . 5 (𝐹𝐵) = -3
9190oveq1i 7429 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) = (-3( ·𝑠𝑍)𝐵)
9285, 91oveq12i 7431 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵))
93 eqid 2725 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
941, 93zlmodzxz0 47603 . . . . 5 {⟨0, 0⟩, ⟨1, 0⟩} = (0g𝑍)
9594eqcomi 2734 . . . 4 (0g𝑍) = {⟨0, 0⟩, ⟨1, 0⟩}
961, 4, 5, 95, 71, 58zlmodzxzequap 47750 . . 3 ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵)) = (0g𝑍)
9792, 96eqtri 2753 . 2 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = (0g𝑍)
9834, 79, 973eqtri 2757 1 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)
Colors of variables: wff setvar class
Syntax hints:  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  𝒫 cpw 4604  {cpr 4632  cop 4636  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  m cmap 8845  0cc0 11140  1c1 11141  -cneg 11477  2c2 12300  3c3 12301  4c4 12302  6c6 12304  cz 12591  Basecbs 17183  +gcplusg 17236  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424   Σg cgsu 17425  CMndccmn 19747  LModclmod 20755  ringczring 21389   freeLMod cfrlm 21697   linC clinc 47655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-cnfld 21297  df-zring 21390  df-dsmm 21683  df-frlm 21698  df-linc 47657
This theorem is referenced by:  zlmodzxzldep  47755
  Copyright terms: Public domain W3C validator