Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem3 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem3 42963
Description: Lemma 3 for zlmodzxzldep 42965. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem3 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)

Proof of Theorem zlmodzxzldeplem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlmodzxzldep.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
2 ovex 6876 . . . 4 (ℤring freeLMod {0, 1}) ∈ V
31, 2eqeltri 2840 . . 3 𝑍 ∈ V
4 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
5 zlmodzxzldep.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
6 zlmodzxzldeplem.f . . . . 5 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
71, 4, 5, 6zlmodzxzldeplem1 42961 . . . 4 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵})
81zlmodzxzlmod 42804 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
9 simpr 477 . . . . . . . . 9 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → ℤring = (Scalar‘𝑍))
109eqcomd 2771 . . . . . . . 8 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → (Scalar‘𝑍) = ℤring)
118, 10ax-mp 5 . . . . . . 7 (Scalar‘𝑍) = ℤring
1211fveq2i 6380 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
13 zringbas 20100 . . . . . . 7 ℤ = (Base‘ℤring)
1413eqcomi 2774 . . . . . 6 (Base‘ℤring) = ℤ
1512, 14eqtri 2787 . . . . 5 (Base‘(Scalar‘𝑍)) = ℤ
1615oveq1i 6854 . . . 4 ((Base‘(Scalar‘𝑍)) ↑𝑚 {𝐴, 𝐵}) = (ℤ ↑𝑚 {𝐴, 𝐵})
177, 16eleqtrri 2843 . . 3 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑𝑚 {𝐴, 𝐵})
18 3z 11660 . . . . . 6 3 ∈ ℤ
19 6nn 11366 . . . . . . 7 6 ∈ ℕ
2019nnzi 11651 . . . . . 6 6 ∈ ℤ
211zlmodzxzel 42805 . . . . . 6 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
2218, 20, 21mp2an 683 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
23 2z 11659 . . . . . 6 2 ∈ ℤ
24 4z 11661 . . . . . 6 4 ∈ ℤ
251zlmodzxzel 42805 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2623, 24, 25mp2an 683 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
274eleq1i 2835 . . . . . 6 (𝐴 ∈ (Base‘𝑍) ↔ {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
285eleq1i 2835 . . . . . 6 (𝐵 ∈ (Base‘𝑍) ↔ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2927, 28anbi12i 620 . . . . 5 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) ↔ ({⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍) ∧ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)))
3022, 26, 29mpbir2an 702 . . . 4 (𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍))
31 prelpwi 5073 . . . 4 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) → {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍))
3230, 31ax-mp 5 . . 3 {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)
33 lincval 42870 . . 3 ((𝑍 ∈ V ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑𝑚 {𝐴, 𝐵}) ∧ {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)) → (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))))
343, 17, 32, 33mp3an 1585 . 2 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥)))
35 lmodcmn 19183 . . . . 5 (𝑍 ∈ LMod → 𝑍 ∈ CMnd)
3635adantr 472 . . . 4 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ CMnd)
378, 36ax-mp 5 . . 3 𝑍 ∈ CMnd
38 prex 5067 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
394, 38eqeltri 2840 . . . 4 𝐴 ∈ V
40 prex 5067 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
415, 40eqeltri 2840 . . . 4 𝐵 ∈ V
421, 4, 5zlmodzxzldeplem 42959 . . . 4 𝐴𝐵
4339, 41, 423pm3.2i 1438 . . 3 (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵)
448simpli 476 . . . . 5 𝑍 ∈ LMod
45 elmapi 8084 . . . . . . 7 (𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵}) → 𝐹:{𝐴, 𝐵}⟶ℤ)
4639prid1 4454 . . . . . . . 8 𝐴 ∈ {𝐴, 𝐵}
47 ffvelrn 6549 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ ℤ)
4846, 47mpan2 682 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐴) ∈ ℤ)
497, 45, 48mp2b 10 . . . . . 6 (𝐹𝐴) ∈ ℤ
508, 9ax-mp 5 . . . . . . . . 9 ring = (Scalar‘𝑍)
5150eqcomi 2774 . . . . . . . 8 (Scalar‘𝑍) = ℤring
5251fveq2i 6380 . . . . . . 7 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
5352, 14eqtri 2787 . . . . . 6 (Base‘(Scalar‘𝑍)) = ℤ
5449, 53eleqtrri 2843 . . . . 5 (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍))
554, 22eqeltri 2840 . . . . 5 𝐴 ∈ (Base‘𝑍)
56 eqid 2765 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
57 eqid 2765 . . . . . 6 (Scalar‘𝑍) = (Scalar‘𝑍)
58 eqid 2765 . . . . . 6 ( ·𝑠𝑍) = ( ·𝑠𝑍)
59 eqid 2765 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
6056, 57, 58, 59lmodvscl 19152 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐴 ∈ (Base‘𝑍)) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍))
6144, 54, 55, 60mp3an 1585 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍)
6241prid2 4455 . . . . . . . 8 𝐵 ∈ {𝐴, 𝐵}
63 ffvelrn 6549 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ ℤ)
6462, 63mpan2 682 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐵) ∈ ℤ)
657, 45, 64mp2b 10 . . . . . 6 (𝐹𝐵) ∈ ℤ
6665, 53eleqtrri 2843 . . . . 5 (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍))
675, 26eqeltri 2840 . . . . 5 𝐵 ∈ (Base‘𝑍)
6856, 57, 58, 59lmodvscl 19152 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐵 ∈ (Base‘𝑍)) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
6944, 66, 67, 68mp3an 1585 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍)
7061, 69pm3.2i 462 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
71 eqid 2765 . . . 4 (+g𝑍) = (+g𝑍)
72 fveq2 6377 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
73 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
7472, 73oveq12d 6862 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
75 fveq2 6377 . . . . 5 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
76 id 22 . . . . 5 (𝑥 = 𝐵𝑥 = 𝐵)
7775, 76oveq12d 6862 . . . 4 (𝑥 = 𝐵 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
7856, 71, 74, 77gsumpr 42811 . . 3 ((𝑍 ∈ CMnd ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) ∧ (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))) → (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)))
7937, 43, 70, 78mp3an 1585 . 2 (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵))
806fveq1i 6378 . . . . . 6 (𝐹𝐴) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴)
81 2ex 11351 . . . . . . . 8 2 ∈ V
8239, 81fvpr1 6651 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
8342, 82ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2
8480, 83eqtri 2787 . . . . 5 (𝐹𝐴) = 2
8584oveq1i 6854 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) = (2( ·𝑠𝑍)𝐴)
866fveq1i 6378 . . . . . 6 (𝐹𝐵) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵)
87 negex 10535 . . . . . . . 8 -3 ∈ V
8841, 87fvpr2 6652 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3)
8942, 88ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3
9086, 89eqtri 2787 . . . . 5 (𝐹𝐵) = -3
9190oveq1i 6854 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) = (-3( ·𝑠𝑍)𝐵)
9285, 91oveq12i 6856 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵))
93 eqid 2765 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
941, 93zlmodzxz0 42806 . . . . 5 {⟨0, 0⟩, ⟨1, 0⟩} = (0g𝑍)
9594eqcomi 2774 . . . 4 (0g𝑍) = {⟨0, 0⟩, ⟨1, 0⟩}
961, 4, 5, 95, 71, 58zlmodzxzequap 42960 . . 3 ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵)) = (0g𝑍)
9792, 96eqtri 2787 . 2 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = (0g𝑍)
9834, 79, 973eqtri 2791 1 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  Vcvv 3350  𝒫 cpw 4317  {cpr 4338  cop 4342  cmpt 4890  wf 6066  cfv 6070  (class class class)co 6844  𝑚 cmap 8062  0cc0 10191  1c1 10192  -cneg 10523  2c2 11329  3c3 11330  4c4 11331  6c6 11333  cz 11626  Basecbs 16133  +gcplusg 16217  Scalarcsca 16220   ·𝑠 cvsca 16221  0gc0g 16369   Σg cgsu 16370  CMndccmn 18462  LModclmod 19135  ringzring 20094   freeLMod cfrlm 20369   linC clinc 42865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-addf 10270  ax-mulf 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-supp 7500  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-oadd 7770  df-er 7949  df-map 8064  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fsupp 8485  df-sup 8557  df-oi 8624  df-card 9018  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-nn 11277  df-2 11337  df-3 11338  df-4 11339  df-5 11340  df-6 11341  df-7 11342  df-8 11343  df-9 11344  df-n0 11541  df-z 11627  df-dec 11744  df-uz 11890  df-fz 12537  df-fzo 12677  df-seq 13012  df-hash 13325  df-struct 16135  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-starv 16232  df-sca 16233  df-vsca 16234  df-ip 16235  df-tset 16236  df-ple 16237  df-ds 16239  df-unif 16240  df-hom 16241  df-cco 16242  df-0g 16371  df-gsum 16372  df-prds 16377  df-pws 16379  df-mre 16515  df-mrc 16516  df-acs 16518  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-submnd 17605  df-grp 17695  df-minusg 17696  df-sbg 17697  df-mulg 17811  df-subg 17858  df-cntz 18016  df-cmn 18464  df-abl 18465  df-mgp 18760  df-ur 18772  df-ring 18819  df-cring 18820  df-subrg 19050  df-lmod 19137  df-lss 19205  df-sra 19449  df-rgmod 19450  df-cnfld 20023  df-zring 20095  df-dsmm 20355  df-frlm 20370  df-linc 42867
This theorem is referenced by:  zlmodzxzldep  42965
  Copyright terms: Public domain W3C validator