Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vdegp1bi | Structured version Visualization version GIF version |
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑈, 𝑋} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 |
vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 |
vdegp1bi.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
Ref | Expression |
---|---|
vdegp1bi | ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5358 | . . 3 ⊢ {𝑈, 𝑋} ∈ V | |
2 | vdegp1ai.vg | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | vdegp1ai.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | vdegp1ai.w | . . . . 5 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
5 | wrdf 14203 | . . . . . 6 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼:(0..^(♯‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
6 | 5 | ffund 6600 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → Fun 𝐼) |
7 | 4, 6 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → Fun 𝐼) |
8 | vdegp1ai.vf | . . . . 5 ⊢ (Vtx‘𝐹) = 𝑉 | |
9 | 8 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (Vtx‘𝐹) = 𝑉) |
10 | vdegp1bi.f | . . . . 5 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) | |
11 | wrdv 14213 | . . . . . . 7 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼 ∈ Word V) | |
12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
13 | cats1un 14415 | . . . . . 6 ⊢ ((𝐼 ∈ Word V ∧ {𝑈, 𝑋} ∈ V) → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) | |
14 | 12, 13 | mpan 686 | . . . . 5 ⊢ ({𝑈, 𝑋} ∈ V → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
15 | 10, 14 | eqtrid 2791 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
16 | fvexd 6783 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∈ V) | |
17 | wrdlndm 14214 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝐼) ∉ dom 𝐼) | |
18 | 4, 17 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∉ dom 𝐼) |
19 | vdegp1ai.u | . . . . 5 ⊢ 𝑈 ∈ 𝑉 | |
20 | 19 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ 𝑉) |
21 | vdegp1bi.x | . . . . . 6 ⊢ 𝑋 ∈ 𝑉 | |
22 | 19, 21 | pm3.2i 470 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) |
23 | prelpwi 5365 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → {𝑈, 𝑋} ∈ 𝒫 𝑉) | |
24 | 22, 23 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → {𝑈, 𝑋} ∈ 𝒫 𝑉) |
25 | prid1g 4701 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑋}) | |
26 | 19, 25 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ {𝑈, 𝑋}) |
27 | vdegp1bi.xu | . . . . . . . 8 ⊢ 𝑋 ≠ 𝑈 | |
28 | 27 | necomi 2999 | . . . . . . 7 ⊢ 𝑈 ≠ 𝑋 |
29 | hashprg 14091 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2)) | |
30 | 19, 21, 29 | mp2an 688 | . . . . . . 7 ⊢ (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2) |
31 | 28, 30 | mpbi 229 | . . . . . 6 ⊢ (♯‘{𝑈, 𝑋}) = 2 |
32 | 31 | eqcomi 2748 | . . . . 5 ⊢ 2 = (♯‘{𝑈, 𝑋}) |
33 | 2re 12030 | . . . . . 6 ⊢ 2 ∈ ℝ | |
34 | 33 | eqlei 11068 | . . . . 5 ⊢ (2 = (♯‘{𝑈, 𝑋}) → 2 ≤ (♯‘{𝑈, 𝑋})) |
35 | 32, 34 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 2 ≤ (♯‘{𝑈, 𝑋})) |
36 | 2, 3, 7, 9, 15, 16, 18, 20, 24, 26, 35 | p1evtxdp1 27862 | . . 3 ⊢ ({𝑈, 𝑋} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
37 | 1, 36 | ax-mp 5 | . 2 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) |
38 | fzofi 13675 | . . . . 5 ⊢ (0..^(♯‘𝐼)) ∈ Fin | |
39 | wrddm 14205 | . . . . . . . 8 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom 𝐼 = (0..^(♯‘𝐼))) | |
40 | 4, 39 | ax-mp 5 | . . . . . . 7 ⊢ dom 𝐼 = (0..^(♯‘𝐼)) |
41 | 40 | eqcomi 2748 | . . . . . 6 ⊢ (0..^(♯‘𝐼)) = dom 𝐼 |
42 | 2, 3, 41 | vtxdgfisnn0 27823 | . . . . 5 ⊢ (((0..^(♯‘𝐼)) ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0) |
43 | 38, 19, 42 | mp2an 688 | . . . 4 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0 |
44 | 43 | nn0rei 12227 | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ |
45 | 1re 10959 | . . 3 ⊢ 1 ∈ ℝ | |
46 | rexadd 12948 | . . 3 ⊢ ((((VtxDeg‘𝐺)‘𝑈) ∈ ℝ ∧ 1 ∈ ℝ) → (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1)) | |
47 | 44, 45, 46 | mp2an 688 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1) |
48 | vdegp1ai.d | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
49 | 48 | oveq1i 7278 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) + 1) = (𝑃 + 1) |
50 | 37, 47, 49 | 3eqtri 2771 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∉ wnel 3050 {crab 3069 Vcvv 3430 ∖ cdif 3888 ∪ cun 3889 ∅c0 4261 𝒫 cpw 4538 {csn 4566 {cpr 4568 〈cop 4572 class class class wbr 5078 dom cdm 5588 Fun wfun 6424 ‘cfv 6430 (class class class)co 7268 Fincfn 8707 ℝcr 10854 0cc0 10855 1c1 10856 + caddc 10858 ≤ cle 10994 2c2 12011 ℕ0cn0 12216 +𝑒 cxad 12828 ..^cfzo 13364 ♯chash 14025 Word cword 14198 ++ cconcat 14254 〈“cs1 14281 Vtxcvtx 27347 iEdgciedg 27348 VtxDegcvtxdg 27813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-xadd 12831 df-fz 13222 df-fzo 13365 df-hash 14026 df-word 14199 df-concat 14255 df-s1 14282 df-vtx 27349 df-iedg 27350 df-vtxdg 27814 |
This theorem is referenced by: vdegp1ci 27886 konigsberglem1 28595 konigsberglem2 28596 |
Copyright terms: Public domain | W3C validator |