Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vdegp1bi | Structured version Visualization version GIF version |
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑈, 𝑋} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 |
vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 |
vdegp1bi.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
Ref | Expression |
---|---|
vdegp1bi | ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5364 | . . 3 ⊢ {𝑈, 𝑋} ∈ V | |
2 | vdegp1ai.vg | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | vdegp1ai.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | vdegp1ai.w | . . . . 5 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
5 | wrdf 14267 | . . . . . 6 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼:(0..^(♯‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
6 | 5 | ffund 6634 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → Fun 𝐼) |
7 | 4, 6 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → Fun 𝐼) |
8 | vdegp1ai.vf | . . . . 5 ⊢ (Vtx‘𝐹) = 𝑉 | |
9 | 8 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (Vtx‘𝐹) = 𝑉) |
10 | vdegp1bi.f | . . . . 5 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) | |
11 | wrdv 14277 | . . . . . . 7 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼 ∈ Word V) | |
12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
13 | cats1un 14479 | . . . . . 6 ⊢ ((𝐼 ∈ Word V ∧ {𝑈, 𝑋} ∈ V) → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) | |
14 | 12, 13 | mpan 688 | . . . . 5 ⊢ ({𝑈, 𝑋} ∈ V → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
15 | 10, 14 | eqtrid 2788 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
16 | fvexd 6819 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∈ V) | |
17 | wrdlndm 14278 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝐼) ∉ dom 𝐼) | |
18 | 4, 17 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∉ dom 𝐼) |
19 | vdegp1ai.u | . . . . 5 ⊢ 𝑈 ∈ 𝑉 | |
20 | 19 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ 𝑉) |
21 | vdegp1bi.x | . . . . . 6 ⊢ 𝑋 ∈ 𝑉 | |
22 | 19, 21 | pm3.2i 472 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) |
23 | prelpwi 5376 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → {𝑈, 𝑋} ∈ 𝒫 𝑉) | |
24 | 22, 23 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → {𝑈, 𝑋} ∈ 𝒫 𝑉) |
25 | prid1g 4700 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑋}) | |
26 | 19, 25 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ {𝑈, 𝑋}) |
27 | vdegp1bi.xu | . . . . . . . 8 ⊢ 𝑋 ≠ 𝑈 | |
28 | 27 | necomi 2996 | . . . . . . 7 ⊢ 𝑈 ≠ 𝑋 |
29 | hashprg 14155 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2)) | |
30 | 19, 21, 29 | mp2an 690 | . . . . . . 7 ⊢ (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2) |
31 | 28, 30 | mpbi 229 | . . . . . 6 ⊢ (♯‘{𝑈, 𝑋}) = 2 |
32 | 31 | eqcomi 2745 | . . . . 5 ⊢ 2 = (♯‘{𝑈, 𝑋}) |
33 | 2re 12093 | . . . . . 6 ⊢ 2 ∈ ℝ | |
34 | 33 | eqlei 11131 | . . . . 5 ⊢ (2 = (♯‘{𝑈, 𝑋}) → 2 ≤ (♯‘{𝑈, 𝑋})) |
35 | 32, 34 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 2 ≤ (♯‘{𝑈, 𝑋})) |
36 | 2, 3, 7, 9, 15, 16, 18, 20, 24, 26, 35 | p1evtxdp1 27926 | . . 3 ⊢ ({𝑈, 𝑋} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
37 | 1, 36 | ax-mp 5 | . 2 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) |
38 | fzofi 13740 | . . . . 5 ⊢ (0..^(♯‘𝐼)) ∈ Fin | |
39 | wrddm 14269 | . . . . . . . 8 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom 𝐼 = (0..^(♯‘𝐼))) | |
40 | 4, 39 | ax-mp 5 | . . . . . . 7 ⊢ dom 𝐼 = (0..^(♯‘𝐼)) |
41 | 40 | eqcomi 2745 | . . . . . 6 ⊢ (0..^(♯‘𝐼)) = dom 𝐼 |
42 | 2, 3, 41 | vtxdgfisnn0 27887 | . . . . 5 ⊢ (((0..^(♯‘𝐼)) ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0) |
43 | 38, 19, 42 | mp2an 690 | . . . 4 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0 |
44 | 43 | nn0rei 12290 | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ |
45 | 1re 11021 | . . 3 ⊢ 1 ∈ ℝ | |
46 | rexadd 13012 | . . 3 ⊢ ((((VtxDeg‘𝐺)‘𝑈) ∈ ℝ ∧ 1 ∈ ℝ) → (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1)) | |
47 | 44, 45, 46 | mp2an 690 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1) |
48 | vdegp1ai.d | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
49 | 48 | oveq1i 7317 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) + 1) = (𝑃 + 1) |
50 | 37, 47, 49 | 3eqtri 2768 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∉ wnel 3047 {crab 3284 Vcvv 3437 ∖ cdif 3889 ∪ cun 3890 ∅c0 4262 𝒫 cpw 4539 {csn 4565 {cpr 4567 〈cop 4571 class class class wbr 5081 dom cdm 5600 Fun wfun 6452 ‘cfv 6458 (class class class)co 7307 Fincfn 8764 ℝcr 10916 0cc0 10917 1c1 10918 + caddc 10920 ≤ cle 11056 2c2 12074 ℕ0cn0 12279 +𝑒 cxad 12892 ..^cfzo 13428 ♯chash 14090 Word cword 14262 ++ cconcat 14318 〈“cs1 14345 Vtxcvtx 27411 iEdgciedg 27412 VtxDegcvtxdg 27877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-xadd 12895 df-fz 13286 df-fzo 13429 df-hash 14091 df-word 14263 df-concat 14319 df-s1 14346 df-vtx 27413 df-iedg 27414 df-vtxdg 27878 |
This theorem is referenced by: vdegp1ci 27950 konigsberglem1 28661 konigsberglem2 28662 |
Copyright terms: Public domain | W3C validator |