![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vdegp1bi | Structured version Visualization version GIF version |
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑈, 𝑋} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 |
vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 |
vdegp1bi.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
Ref | Expression |
---|---|
vdegp1bi | ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5038 | . . 3 ⊢ {𝑈, 𝑋} ∈ V | |
2 | vdegp1ai.vg | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | vdegp1ai.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | vdegp1ai.w | . . . . 5 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
5 | wrdf 13505 | . . . . . 6 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼:(0..^(♯‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
6 | 5 | ffund 6188 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → Fun 𝐼) |
7 | 4, 6 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → Fun 𝐼) |
8 | vdegp1ai.vf | . . . . 5 ⊢ (Vtx‘𝐹) = 𝑉 | |
9 | 8 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (Vtx‘𝐹) = 𝑉) |
10 | vdegp1bi.f | . . . . 5 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) | |
11 | wrdv 13515 | . . . . . . 7 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼 ∈ Word V) | |
12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
13 | cats1un 13683 | . . . . . 6 ⊢ ((𝐼 ∈ Word V ∧ {𝑈, 𝑋} ∈ V) → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) | |
14 | 12, 13 | mpan 670 | . . . . 5 ⊢ ({𝑈, 𝑋} ∈ V → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
15 | 10, 14 | syl5eq 2817 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
16 | fvexd 6346 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∈ V) | |
17 | wrdlndm 13516 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝐼) ∉ dom 𝐼) | |
18 | 4, 17 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∉ dom 𝐼) |
19 | vdegp1ai.u | . . . . 5 ⊢ 𝑈 ∈ 𝑉 | |
20 | 19 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ 𝑉) |
21 | vdegp1bi.x | . . . . . 6 ⊢ 𝑋 ∈ 𝑉 | |
22 | 19, 21 | pm3.2i 456 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) |
23 | prelpwi 5044 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → {𝑈, 𝑋} ∈ 𝒫 𝑉) | |
24 | 22, 23 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → {𝑈, 𝑋} ∈ 𝒫 𝑉) |
25 | prid1g 4432 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑋}) | |
26 | 19, 25 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ {𝑈, 𝑋}) |
27 | vdegp1bi.xu | . . . . . . . 8 ⊢ 𝑋 ≠ 𝑈 | |
28 | 27 | necomi 2997 | . . . . . . 7 ⊢ 𝑈 ≠ 𝑋 |
29 | hashprg 13383 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2)) | |
30 | 19, 21, 29 | mp2an 672 | . . . . . . 7 ⊢ (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2) |
31 | 28, 30 | mpbi 220 | . . . . . 6 ⊢ (♯‘{𝑈, 𝑋}) = 2 |
32 | 31 | eqcomi 2780 | . . . . 5 ⊢ 2 = (♯‘{𝑈, 𝑋}) |
33 | 2re 11295 | . . . . . 6 ⊢ 2 ∈ ℝ | |
34 | 33 | eqlei 10352 | . . . . 5 ⊢ (2 = (♯‘{𝑈, 𝑋}) → 2 ≤ (♯‘{𝑈, 𝑋})) |
35 | 32, 34 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 2 ≤ (♯‘{𝑈, 𝑋})) |
36 | 2, 3, 7, 9, 15, 16, 18, 20, 24, 26, 35 | p1evtxdp1 26644 | . . 3 ⊢ ({𝑈, 𝑋} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
37 | 1, 36 | ax-mp 5 | . 2 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) |
38 | fzofi 12980 | . . . . 5 ⊢ (0..^(♯‘𝐼)) ∈ Fin | |
39 | wrddm 13507 | . . . . . . . 8 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom 𝐼 = (0..^(♯‘𝐼))) | |
40 | 4, 39 | ax-mp 5 | . . . . . . 7 ⊢ dom 𝐼 = (0..^(♯‘𝐼)) |
41 | 40 | eqcomi 2780 | . . . . . 6 ⊢ (0..^(♯‘𝐼)) = dom 𝐼 |
42 | 2, 3, 41 | vtxdgfisnn0 26605 | . . . . 5 ⊢ (((0..^(♯‘𝐼)) ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0) |
43 | 38, 19, 42 | mp2an 672 | . . . 4 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0 |
44 | 43 | nn0rei 11509 | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ |
45 | 1re 10244 | . . 3 ⊢ 1 ∈ ℝ | |
46 | rexadd 12267 | . . 3 ⊢ ((((VtxDeg‘𝐺)‘𝑈) ∈ ℝ ∧ 1 ∈ ℝ) → (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1)) | |
47 | 44, 45, 46 | mp2an 672 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1) |
48 | vdegp1ai.d | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
49 | 48 | oveq1i 6805 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) + 1) = (𝑃 + 1) |
50 | 37, 47, 49 | 3eqtri 2797 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∉ wnel 3046 {crab 3065 Vcvv 3351 ∖ cdif 3720 ∪ cun 3721 ∅c0 4063 𝒫 cpw 4298 {csn 4317 {cpr 4319 〈cop 4323 class class class wbr 4787 dom cdm 5250 Fun wfun 6024 ‘cfv 6030 (class class class)co 6795 Fincfn 8112 ℝcr 10140 0cc0 10141 1c1 10142 + caddc 10144 ≤ cle 10280 2c2 11275 ℕ0cn0 11498 +𝑒 cxad 12148 ..^cfzo 12672 ♯chash 13320 Word cword 13486 ++ cconcat 13488 〈“cs1 13489 Vtxcvtx 26094 iEdgciedg 26095 VtxDegcvtxdg 26595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7099 ax-cnex 10197 ax-resscn 10198 ax-1cn 10199 ax-icn 10200 ax-addcl 10201 ax-addrcl 10202 ax-mulcl 10203 ax-mulrcl 10204 ax-mulcom 10205 ax-addass 10206 ax-mulass 10207 ax-distr 10208 ax-i2m1 10209 ax-1ne0 10210 ax-1rid 10211 ax-rnegex 10212 ax-rrecex 10213 ax-cnre 10214 ax-pre-lttri 10215 ax-pre-lttrn 10216 ax-pre-ltadd 10217 ax-pre-mulgt0 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6756 df-ov 6798 df-oprab 6799 df-mpt2 6800 df-om 7216 df-1st 7318 df-2nd 7319 df-wrecs 7562 df-recs 7624 df-rdg 7662 df-1o 7716 df-oadd 7720 df-er 7899 df-en 8113 df-dom 8114 df-sdom 8115 df-fin 8116 df-card 8968 df-cda 9195 df-pnf 10281 df-mnf 10282 df-xr 10283 df-ltxr 10284 df-le 10285 df-sub 10473 df-neg 10474 df-nn 11226 df-2 11284 df-n0 11499 df-xnn0 11570 df-z 11584 df-uz 11893 df-xadd 12151 df-fz 12533 df-fzo 12673 df-hash 13321 df-word 13494 df-concat 13496 df-s1 13497 df-vtx 26096 df-iedg 26097 df-vtxdg 26596 |
This theorem is referenced by: vdegp1ci 26668 konigsberglem1 27431 konigsberglem2 27432 |
Copyright terms: Public domain | W3C validator |