| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdegp1bi | Structured version Visualization version GIF version | ||
| Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑈, 𝑋} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
| vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
| vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
| vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 |
| vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 |
| vdegp1bi.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
| Ref | Expression |
|---|---|
| vdegp1bi | ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5392 | . . 3 ⊢ {𝑈, 𝑋} ∈ V | |
| 2 | vdegp1ai.vg | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | vdegp1ai.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | vdegp1ai.w | . . . . 5 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
| 5 | wrdf 14483 | . . . . . 6 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼:(0..^(♯‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 6 | 5 | ffund 6692 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → Fun 𝐼) |
| 7 | 4, 6 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → Fun 𝐼) |
| 8 | vdegp1ai.vf | . . . . 5 ⊢ (Vtx‘𝐹) = 𝑉 | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (Vtx‘𝐹) = 𝑉) |
| 10 | vdegp1bi.f | . . . . 5 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) | |
| 11 | wrdv 14494 | . . . . . . 7 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼 ∈ Word V) | |
| 12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
| 13 | cats1un 14686 | . . . . . 6 ⊢ ((𝐼 ∈ Word V ∧ {𝑈, 𝑋} ∈ V) → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) | |
| 14 | 12, 13 | mpan 690 | . . . . 5 ⊢ ({𝑈, 𝑋} ∈ V → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
| 15 | 10, 14 | eqtrid 2776 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
| 16 | fvexd 6873 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∈ V) | |
| 17 | wrdlndm 14495 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝐼) ∉ dom 𝐼) | |
| 18 | 4, 17 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∉ dom 𝐼) |
| 19 | vdegp1ai.u | . . . . 5 ⊢ 𝑈 ∈ 𝑉 | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ 𝑉) |
| 21 | vdegp1bi.x | . . . . . 6 ⊢ 𝑋 ∈ 𝑉 | |
| 22 | 19, 21 | pm3.2i 470 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) |
| 23 | prelpwi 5407 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → {𝑈, 𝑋} ∈ 𝒫 𝑉) | |
| 24 | 22, 23 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → {𝑈, 𝑋} ∈ 𝒫 𝑉) |
| 25 | prid1g 4724 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑋}) | |
| 26 | 19, 25 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ {𝑈, 𝑋}) |
| 27 | vdegp1bi.xu | . . . . . . . 8 ⊢ 𝑋 ≠ 𝑈 | |
| 28 | 27 | necomi 2979 | . . . . . . 7 ⊢ 𝑈 ≠ 𝑋 |
| 29 | hashprg 14360 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2)) | |
| 30 | 19, 21, 29 | mp2an 692 | . . . . . . 7 ⊢ (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2) |
| 31 | 28, 30 | mpbi 230 | . . . . . 6 ⊢ (♯‘{𝑈, 𝑋}) = 2 |
| 32 | 31 | eqcomi 2738 | . . . . 5 ⊢ 2 = (♯‘{𝑈, 𝑋}) |
| 33 | 2re 12260 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 34 | 33 | eqlei 11284 | . . . . 5 ⊢ (2 = (♯‘{𝑈, 𝑋}) → 2 ≤ (♯‘{𝑈, 𝑋})) |
| 35 | 32, 34 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 2 ≤ (♯‘{𝑈, 𝑋})) |
| 36 | 2, 3, 7, 9, 15, 16, 18, 20, 24, 26, 35 | p1evtxdp1 29442 | . . 3 ⊢ ({𝑈, 𝑋} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
| 37 | 1, 36 | ax-mp 5 | . 2 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) |
| 38 | fzofi 13939 | . . . . 5 ⊢ (0..^(♯‘𝐼)) ∈ Fin | |
| 39 | wrddm 14486 | . . . . . . . 8 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom 𝐼 = (0..^(♯‘𝐼))) | |
| 40 | 4, 39 | ax-mp 5 | . . . . . . 7 ⊢ dom 𝐼 = (0..^(♯‘𝐼)) |
| 41 | 40 | eqcomi 2738 | . . . . . 6 ⊢ (0..^(♯‘𝐼)) = dom 𝐼 |
| 42 | 2, 3, 41 | vtxdgfisnn0 29403 | . . . . 5 ⊢ (((0..^(♯‘𝐼)) ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0) |
| 43 | 38, 19, 42 | mp2an 692 | . . . 4 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0 |
| 44 | 43 | nn0rei 12453 | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ |
| 45 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 46 | rexadd 13192 | . . 3 ⊢ ((((VtxDeg‘𝐺)‘𝑈) ∈ ℝ ∧ 1 ∈ ℝ) → (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1)) | |
| 47 | 44, 45, 46 | mp2an 692 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1) |
| 48 | vdegp1ai.d | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
| 49 | 48 | oveq1i 7397 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) + 1) = (𝑃 + 1) |
| 50 | 37, 47, 49 | 3eqtri 2756 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 {crab 3405 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 ∅c0 4296 𝒫 cpw 4563 {csn 4589 {cpr 4591 〈cop 4595 class class class wbr 5107 dom cdm 5638 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 ≤ cle 11209 2c2 12241 ℕ0cn0 12442 +𝑒 cxad 13070 ..^cfzo 13615 ♯chash 14295 Word cword 14478 ++ cconcat 14535 〈“cs1 14560 Vtxcvtx 28923 iEdgciedg 28924 VtxDegcvtxdg 29393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-xadd 13073 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-vtx 28925 df-iedg 28926 df-vtxdg 29394 |
| This theorem is referenced by: vdegp1ci 29466 konigsberglem1 30181 konigsberglem2 30182 |
| Copyright terms: Public domain | W3C validator |