MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdegp1bi Structured version   Visualization version   GIF version

Theorem vdegp1bi 27321
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑈, 𝑋} to the edge set, where 𝑋𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.)
Hypotheses
Ref Expression
vdegp1ai.vg 𝑉 = (Vtx‘𝐺)
vdegp1ai.u 𝑈𝑉
vdegp1ai.i 𝐼 = (iEdg‘𝐺)
vdegp1ai.w 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
vdegp1ai.d ((VtxDeg‘𝐺)‘𝑈) = 𝑃
vdegp1ai.vf (Vtx‘𝐹) = 𝑉
vdegp1bi.x 𝑋𝑉
vdegp1bi.xu 𝑋𝑈
vdegp1bi.f (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
Assertion
Ref Expression
vdegp1bi ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)

Proof of Theorem vdegp1bi
StepHypRef Expression
1 prex 5335 . . 3 {𝑈, 𝑋} ∈ V
2 vdegp1ai.vg . . . 4 𝑉 = (Vtx‘𝐺)
3 vdegp1ai.i . . . 4 𝐼 = (iEdg‘𝐺)
4 vdegp1ai.w . . . . 5 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
5 wrdf 13869 . . . . . 6 (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼:(0..^(♯‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
65ffund 6520 . . . . 5 (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → Fun 𝐼)
74, 6mp1i 13 . . . 4 ({𝑈, 𝑋} ∈ V → Fun 𝐼)
8 vdegp1ai.vf . . . . 5 (Vtx‘𝐹) = 𝑉
98a1i 11 . . . 4 ({𝑈, 𝑋} ∈ V → (Vtx‘𝐹) = 𝑉)
10 vdegp1bi.f . . . . 5 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
11 wrdv 13880 . . . . . . 7 (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼 ∈ Word V)
124, 11ax-mp 5 . . . . . 6 𝐼 ∈ Word V
13 cats1un 14085 . . . . . 6 ((𝐼 ∈ Word V ∧ {𝑈, 𝑋} ∈ V) → (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩) = (𝐼 ∪ {⟨(♯‘𝐼), {𝑈, 𝑋}⟩}))
1412, 13mpan 688 . . . . 5 ({𝑈, 𝑋} ∈ V → (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩) = (𝐼 ∪ {⟨(♯‘𝐼), {𝑈, 𝑋}⟩}))
1510, 14syl5eq 2870 . . . 4 ({𝑈, 𝑋} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {⟨(♯‘𝐼), {𝑈, 𝑋}⟩}))
16 fvexd 6687 . . . 4 ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∈ V)
17 wrdlndm 13881 . . . . 5 (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝐼) ∉ dom 𝐼)
184, 17mp1i 13 . . . 4 ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∉ dom 𝐼)
19 vdegp1ai.u . . . . 5 𝑈𝑉
2019a1i 11 . . . 4 ({𝑈, 𝑋} ∈ V → 𝑈𝑉)
21 vdegp1bi.x . . . . . 6 𝑋𝑉
2219, 21pm3.2i 473 . . . . 5 (𝑈𝑉𝑋𝑉)
23 prelpwi 5342 . . . . 5 ((𝑈𝑉𝑋𝑉) → {𝑈, 𝑋} ∈ 𝒫 𝑉)
2422, 23mp1i 13 . . . 4 ({𝑈, 𝑋} ∈ V → {𝑈, 𝑋} ∈ 𝒫 𝑉)
25 prid1g 4698 . . . . 5 (𝑈𝑉𝑈 ∈ {𝑈, 𝑋})
2619, 25mp1i 13 . . . 4 ({𝑈, 𝑋} ∈ V → 𝑈 ∈ {𝑈, 𝑋})
27 vdegp1bi.xu . . . . . . . 8 𝑋𝑈
2827necomi 3072 . . . . . . 7 𝑈𝑋
29 hashprg 13759 . . . . . . . 8 ((𝑈𝑉𝑋𝑉) → (𝑈𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2))
3019, 21, 29mp2an 690 . . . . . . 7 (𝑈𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2)
3128, 30mpbi 232 . . . . . 6 (♯‘{𝑈, 𝑋}) = 2
3231eqcomi 2832 . . . . 5 2 = (♯‘{𝑈, 𝑋})
33 2re 11714 . . . . . 6 2 ∈ ℝ
3433eqlei 10752 . . . . 5 (2 = (♯‘{𝑈, 𝑋}) → 2 ≤ (♯‘{𝑈, 𝑋}))
3532, 34mp1i 13 . . . 4 ({𝑈, 𝑋} ∈ V → 2 ≤ (♯‘{𝑈, 𝑋}))
362, 3, 7, 9, 15, 16, 18, 20, 24, 26, 35p1evtxdp1 27298 . . 3 ({𝑈, 𝑋} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1))
371, 36ax-mp 5 . 2 ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)
38 fzofi 13345 . . . . 5 (0..^(♯‘𝐼)) ∈ Fin
39 wrddm 13871 . . . . . . . 8 (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom 𝐼 = (0..^(♯‘𝐼)))
404, 39ax-mp 5 . . . . . . 7 dom 𝐼 = (0..^(♯‘𝐼))
4140eqcomi 2832 . . . . . 6 (0..^(♯‘𝐼)) = dom 𝐼
422, 3, 41vtxdgfisnn0 27259 . . . . 5 (((0..^(♯‘𝐼)) ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0)
4338, 19, 42mp2an 690 . . . 4 ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0
4443nn0rei 11911 . . 3 ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ
45 1re 10643 . . 3 1 ∈ ℝ
46 rexadd 12628 . . 3 ((((VtxDeg‘𝐺)‘𝑈) ∈ ℝ ∧ 1 ∈ ℝ) → (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1))
4744, 45, 46mp2an 690 . 2 (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1)
48 vdegp1ai.d . . 3 ((VtxDeg‘𝐺)‘𝑈) = 𝑃
4948oveq1i 7168 . 2 (((VtxDeg‘𝐺)‘𝑈) + 1) = (𝑃 + 1)
5037, 47, 493eqtri 2850 1 ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wnel 3125  {crab 3144  Vcvv 3496  cdif 3935  cun 3936  c0 4293  𝒫 cpw 4541  {csn 4569  {cpr 4571  cop 4575   class class class wbr 5068  dom cdm 5557  Fun wfun 6351  cfv 6357  (class class class)co 7158  Fincfn 8511  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  cle 10678  2c2 11695  0cn0 11900   +𝑒 cxad 12508  ..^cfzo 13036  chash 13693  Word cword 13864   ++ cconcat 13924  ⟨“cs1 13951  Vtxcvtx 26783  iEdgciedg 26784  VtxDegcvtxdg 27249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-xadd 12511  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-vtx 26785  df-iedg 26786  df-vtxdg 27250
This theorem is referenced by:  vdegp1ci  27322  konigsberglem1  28033  konigsberglem2  28034
  Copyright terms: Public domain W3C validator