Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vdegp1bi | Structured version Visualization version GIF version |
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑈, 𝑋} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 |
vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 |
vdegp1bi.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
Ref | Expression |
---|---|
vdegp1bi | ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5377 | . . 3 ⊢ {𝑈, 𝑋} ∈ V | |
2 | vdegp1ai.vg | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | vdegp1ai.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | vdegp1ai.w | . . . . 5 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
5 | wrdf 14322 | . . . . . 6 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼:(0..^(♯‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
6 | 5 | ffund 6655 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → Fun 𝐼) |
7 | 4, 6 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → Fun 𝐼) |
8 | vdegp1ai.vf | . . . . 5 ⊢ (Vtx‘𝐹) = 𝑉 | |
9 | 8 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (Vtx‘𝐹) = 𝑉) |
10 | vdegp1bi.f | . . . . 5 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) | |
11 | wrdv 14332 | . . . . . . 7 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼 ∈ Word V) | |
12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
13 | cats1un 14532 | . . . . . 6 ⊢ ((𝐼 ∈ Word V ∧ {𝑈, 𝑋} ∈ V) → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) | |
14 | 12, 13 | mpan 687 | . . . . 5 ⊢ ({𝑈, 𝑋} ∈ V → (𝐼 ++ 〈“{𝑈, 𝑋}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
15 | 10, 14 | eqtrid 2788 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {〈(♯‘𝐼), {𝑈, 𝑋}〉})) |
16 | fvexd 6840 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∈ V) | |
17 | wrdlndm 14333 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝐼) ∉ dom 𝐼) | |
18 | 4, 17 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → (♯‘𝐼) ∉ dom 𝐼) |
19 | vdegp1ai.u | . . . . 5 ⊢ 𝑈 ∈ 𝑉 | |
20 | 19 | a1i 11 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ 𝑉) |
21 | vdegp1bi.x | . . . . . 6 ⊢ 𝑋 ∈ 𝑉 | |
22 | 19, 21 | pm3.2i 471 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) |
23 | prelpwi 5392 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → {𝑈, 𝑋} ∈ 𝒫 𝑉) | |
24 | 22, 23 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → {𝑈, 𝑋} ∈ 𝒫 𝑉) |
25 | prid1g 4708 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑋}) | |
26 | 19, 25 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 𝑈 ∈ {𝑈, 𝑋}) |
27 | vdegp1bi.xu | . . . . . . . 8 ⊢ 𝑋 ≠ 𝑈 | |
28 | 27 | necomi 2995 | . . . . . . 7 ⊢ 𝑈 ≠ 𝑋 |
29 | hashprg 14210 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2)) | |
30 | 19, 21, 29 | mp2an 689 | . . . . . . 7 ⊢ (𝑈 ≠ 𝑋 ↔ (♯‘{𝑈, 𝑋}) = 2) |
31 | 28, 30 | mpbi 229 | . . . . . 6 ⊢ (♯‘{𝑈, 𝑋}) = 2 |
32 | 31 | eqcomi 2745 | . . . . 5 ⊢ 2 = (♯‘{𝑈, 𝑋}) |
33 | 2re 12148 | . . . . . 6 ⊢ 2 ∈ ℝ | |
34 | 33 | eqlei 11186 | . . . . 5 ⊢ (2 = (♯‘{𝑈, 𝑋}) → 2 ≤ (♯‘{𝑈, 𝑋})) |
35 | 32, 34 | mp1i 13 | . . . 4 ⊢ ({𝑈, 𝑋} ∈ V → 2 ≤ (♯‘{𝑈, 𝑋})) |
36 | 2, 3, 7, 9, 15, 16, 18, 20, 24, 26, 35 | p1evtxdp1 28170 | . . 3 ⊢ ({𝑈, 𝑋} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
37 | 1, 36 | ax-mp 5 | . 2 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) |
38 | fzofi 13795 | . . . . 5 ⊢ (0..^(♯‘𝐼)) ∈ Fin | |
39 | wrddm 14324 | . . . . . . . 8 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom 𝐼 = (0..^(♯‘𝐼))) | |
40 | 4, 39 | ax-mp 5 | . . . . . . 7 ⊢ dom 𝐼 = (0..^(♯‘𝐼)) |
41 | 40 | eqcomi 2745 | . . . . . 6 ⊢ (0..^(♯‘𝐼)) = dom 𝐼 |
42 | 2, 3, 41 | vtxdgfisnn0 28131 | . . . . 5 ⊢ (((0..^(♯‘𝐼)) ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0) |
43 | 38, 19, 42 | mp2an 689 | . . . 4 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0 |
44 | 43 | nn0rei 12345 | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) ∈ ℝ |
45 | 1re 11076 | . . 3 ⊢ 1 ∈ ℝ | |
46 | rexadd 13067 | . . 3 ⊢ ((((VtxDeg‘𝐺)‘𝑈) ∈ ℝ ∧ 1 ∈ ℝ) → (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1)) | |
47 | 44, 45, 46 | mp2an 689 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) +𝑒 1) = (((VtxDeg‘𝐺)‘𝑈) + 1) |
48 | vdegp1ai.d | . . 3 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
49 | 48 | oveq1i 7347 | . 2 ⊢ (((VtxDeg‘𝐺)‘𝑈) + 1) = (𝑃 + 1) |
50 | 37, 47, 49 | 3eqtri 2768 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∉ wnel 3046 {crab 3403 Vcvv 3441 ∖ cdif 3895 ∪ cun 3896 ∅c0 4269 𝒫 cpw 4547 {csn 4573 {cpr 4575 〈cop 4579 class class class wbr 5092 dom cdm 5620 Fun wfun 6473 ‘cfv 6479 (class class class)co 7337 Fincfn 8804 ℝcr 10971 0cc0 10972 1c1 10973 + caddc 10975 ≤ cle 11111 2c2 12129 ℕ0cn0 12334 +𝑒 cxad 12947 ..^cfzo 13483 ♯chash 14145 Word cword 14317 ++ cconcat 14373 〈“cs1 14399 Vtxcvtx 27655 iEdgciedg 27656 VtxDegcvtxdg 28121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-xadd 12950 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-concat 14374 df-s1 14400 df-vtx 27657 df-iedg 27658 df-vtxdg 28122 |
This theorem is referenced by: vdegp1ci 28194 konigsberglem1 28904 konigsberglem2 28905 |
Copyright terms: Public domain | W3C validator |