![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrexilem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for cusgrexi 29230. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
cusgrexilem2 | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
2 | eldifi 4122 | . . . 4 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛 ∈ 𝑉) | |
3 | prelpwi 5443 | . . . 4 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → {𝑣, 𝑛} ∈ 𝒫 𝑉) | |
4 | 1, 2, 3 | syl2an 595 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ 𝒫 𝑉) |
5 | eldifsni 4789 | . . . . . 6 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛 ≠ 𝑣) | |
6 | 5 | necomd 2991 | . . . . 5 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑣 ≠ 𝑛) |
7 | 6 | adantl 481 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣 ≠ 𝑛) |
8 | hashprg 14372 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝑣 ≠ 𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2)) | |
9 | 1, 2, 8 | syl2an 595 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑣 ≠ 𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2)) |
10 | 7, 9 | mpbid 231 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (♯‘{𝑣, 𝑛}) = 2) |
11 | fveqeq2 6900 | . . . 4 ⊢ (𝑥 = {𝑣, 𝑛} → ((♯‘𝑥) = 2 ↔ (♯‘{𝑣, 𝑛}) = 2)) | |
12 | rnresi 6072 | . . . . 5 ⊢ ran ( I ↾ 𝑃) = 𝑃 | |
13 | usgrexi.p | . . . . 5 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
14 | 12, 13 | eqtri 2755 | . . . 4 ⊢ ran ( I ↾ 𝑃) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
15 | 11, 14 | elrab2 3683 | . . 3 ⊢ ({𝑣, 𝑛} ∈ ran ( I ↾ 𝑃) ↔ ({𝑣, 𝑛} ∈ 𝒫 𝑉 ∧ (♯‘{𝑣, 𝑛}) = 2)) |
16 | 4, 10, 15 | sylanbrc 582 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ ran ( I ↾ 𝑃)) |
17 | sseq2 4004 | . . 3 ⊢ (𝑒 = {𝑣, 𝑛} → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛})) | |
18 | 17 | adantl 481 | . 2 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) ∧ 𝑒 = {𝑣, 𝑛}) → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛})) |
19 | ssidd 4001 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ⊆ {𝑣, 𝑛}) | |
20 | 16, 18, 19 | rspcedvd 3609 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∃wrex 3065 {crab 3427 ∖ cdif 3941 ⊆ wss 3944 𝒫 cpw 4598 {csn 4624 {cpr 4626 I cid 5569 ran crn 5673 ↾ cres 5674 ‘cfv 6542 2c2 12283 ♯chash 14307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-hash 14308 |
This theorem is referenced by: cusgrexi 29230 structtocusgr 29233 |
Copyright terms: Public domain | W3C validator |