MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexilem2 Structured version   Visualization version   GIF version

Theorem cusgrexilem2 29327
Description: Lemma 2 for cusgrexi 29328. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexilem2 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
Distinct variable groups:   𝑥,𝑉   𝑥,𝑃   𝑥,𝑊   𝑃,𝑒,𝑛,𝑣,𝑥   𝑒,𝑉,𝑛,𝑣   𝑒,𝑊,𝑛,𝑣

Proof of Theorem cusgrexilem2
StepHypRef Expression
1 simpr 483 . . . 4 ((𝑉𝑊𝑣𝑉) → 𝑣𝑉)
2 eldifi 4123 . . . 4 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑉)
3 prelpwi 5449 . . . 4 ((𝑣𝑉𝑛𝑉) → {𝑣, 𝑛} ∈ 𝒫 𝑉)
41, 2, 3syl2an 594 . . 3 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ 𝒫 𝑉)
5 eldifsni 4795 . . . . . 6 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑣)
65necomd 2985 . . . . 5 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑣𝑛)
76adantl 480 . . . 4 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣𝑛)
8 hashprg 14390 . . . . 5 ((𝑣𝑉𝑛𝑉) → (𝑣𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2))
91, 2, 8syl2an 594 . . . 4 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑣𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2))
107, 9mpbid 231 . . 3 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (♯‘{𝑣, 𝑛}) = 2)
11 fveqeq2 6905 . . . 4 (𝑥 = {𝑣, 𝑛} → ((♯‘𝑥) = 2 ↔ (♯‘{𝑣, 𝑛}) = 2))
12 rnresi 6079 . . . . 5 ran ( I ↾ 𝑃) = 𝑃
13 usgrexi.p . . . . 5 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
1412, 13eqtri 2753 . . . 4 ran ( I ↾ 𝑃) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
1511, 14elrab2 3682 . . 3 ({𝑣, 𝑛} ∈ ran ( I ↾ 𝑃) ↔ ({𝑣, 𝑛} ∈ 𝒫 𝑉 ∧ (♯‘{𝑣, 𝑛}) = 2))
164, 10, 15sylanbrc 581 . 2 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ ran ( I ↾ 𝑃))
17 sseq2 4003 . . 3 (𝑒 = {𝑣, 𝑛} → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛}))
1817adantl 480 . 2 ((((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) ∧ 𝑒 = {𝑣, 𝑛}) → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛}))
19 ssidd 4000 . 2 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ⊆ {𝑣, 𝑛})
2016, 18, 19rspcedvd 3608 1 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  wrex 3059  {crab 3418  cdif 3941  wss 3944  𝒫 cpw 4604  {csn 4630  {cpr 4632   I cid 5575  ran crn 5679  cres 5680  cfv 6549  2c2 12300  chash 14325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-hash 14326
This theorem is referenced by:  cusgrexi  29328  structtocusgr  29331
  Copyright terms: Public domain W3C validator