MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexilem2 Structured version   Visualization version   GIF version

Theorem cusgrexilem2 29294
Description: Lemma 2 for cusgrexi 29295. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexilem2 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
Distinct variable groups:   𝑥,𝑉   𝑥,𝑃   𝑥,𝑊   𝑃,𝑒,𝑛,𝑣,𝑥   𝑒,𝑉,𝑛,𝑣   𝑒,𝑊,𝑛,𝑣

Proof of Theorem cusgrexilem2
StepHypRef Expression
1 simpr 483 . . . 4 ((𝑉𝑊𝑣𝑉) → 𝑣𝑉)
2 eldifi 4120 . . . 4 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑉)
3 prelpwi 5444 . . . 4 ((𝑣𝑉𝑛𝑉) → {𝑣, 𝑛} ∈ 𝒫 𝑉)
41, 2, 3syl2an 594 . . 3 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ 𝒫 𝑉)
5 eldifsni 4790 . . . . . 6 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑣)
65necomd 2986 . . . . 5 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑣𝑛)
76adantl 480 . . . 4 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣𝑛)
8 hashprg 14381 . . . . 5 ((𝑣𝑉𝑛𝑉) → (𝑣𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2))
91, 2, 8syl2an 594 . . . 4 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑣𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2))
107, 9mpbid 231 . . 3 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (♯‘{𝑣, 𝑛}) = 2)
11 fveqeq2 6899 . . . 4 (𝑥 = {𝑣, 𝑛} → ((♯‘𝑥) = 2 ↔ (♯‘{𝑣, 𝑛}) = 2))
12 rnresi 6074 . . . . 5 ran ( I ↾ 𝑃) = 𝑃
13 usgrexi.p . . . . 5 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
1412, 13eqtri 2753 . . . 4 ran ( I ↾ 𝑃) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
1511, 14elrab2 3679 . . 3 ({𝑣, 𝑛} ∈ ran ( I ↾ 𝑃) ↔ ({𝑣, 𝑛} ∈ 𝒫 𝑉 ∧ (♯‘{𝑣, 𝑛}) = 2))
164, 10, 15sylanbrc 581 . 2 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ ran ( I ↾ 𝑃))
17 sseq2 4000 . . 3 (𝑒 = {𝑣, 𝑛} → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛}))
1817adantl 480 . 2 ((((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) ∧ 𝑒 = {𝑣, 𝑛}) → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛}))
19 ssidd 3997 . 2 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ⊆ {𝑣, 𝑛})
2016, 18, 19rspcedvd 3605 1 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2930  wrex 3060  {crab 3419  cdif 3938  wss 3941  𝒫 cpw 4599  {csn 4625  {cpr 4627   I cid 5570  ran crn 5674  cres 5675  cfv 6543  2c2 12292  chash 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-hash 14317
This theorem is referenced by:  cusgrexi  29295  structtocusgr  29298
  Copyright terms: Public domain W3C validator