MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexilem2 Structured version   Visualization version   GIF version

Theorem cusgrexilem2 27809
Description: Lemma 2 for cusgrexi 27810. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexilem2 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
Distinct variable groups:   𝑥,𝑉   𝑥,𝑃   𝑥,𝑊   𝑃,𝑒,𝑛,𝑣,𝑥   𝑒,𝑉,𝑛,𝑣   𝑒,𝑊,𝑛,𝑣

Proof of Theorem cusgrexilem2
StepHypRef Expression
1 simpr 485 . . . 4 ((𝑉𝑊𝑣𝑉) → 𝑣𝑉)
2 eldifi 4061 . . . 4 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑉)
3 prelpwi 5363 . . . 4 ((𝑣𝑉𝑛𝑉) → {𝑣, 𝑛} ∈ 𝒫 𝑉)
41, 2, 3syl2an 596 . . 3 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ 𝒫 𝑉)
5 eldifsni 4723 . . . . . 6 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑣)
65necomd 2999 . . . . 5 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑣𝑛)
76adantl 482 . . . 4 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣𝑛)
8 hashprg 14110 . . . . 5 ((𝑣𝑉𝑛𝑉) → (𝑣𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2))
91, 2, 8syl2an 596 . . . 4 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑣𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2))
107, 9mpbid 231 . . 3 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (♯‘{𝑣, 𝑛}) = 2)
11 fveqeq2 6783 . . . 4 (𝑥 = {𝑣, 𝑛} → ((♯‘𝑥) = 2 ↔ (♯‘{𝑣, 𝑛}) = 2))
12 rnresi 5983 . . . . 5 ran ( I ↾ 𝑃) = 𝑃
13 usgrexi.p . . . . 5 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
1412, 13eqtri 2766 . . . 4 ran ( I ↾ 𝑃) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
1511, 14elrab2 3627 . . 3 ({𝑣, 𝑛} ∈ ran ( I ↾ 𝑃) ↔ ({𝑣, 𝑛} ∈ 𝒫 𝑉 ∧ (♯‘{𝑣, 𝑛}) = 2))
164, 10, 15sylanbrc 583 . 2 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ ran ( I ↾ 𝑃))
17 sseq2 3947 . . 3 (𝑒 = {𝑣, 𝑛} → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛}))
1817adantl 482 . 2 ((((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) ∧ 𝑒 = {𝑣, 𝑛}) → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛}))
19 ssidd 3944 . 2 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ⊆ {𝑣, 𝑛})
2016, 18, 19rspcedvd 3563 1 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  cdif 3884  wss 3887  𝒫 cpw 4533  {csn 4561  {cpr 4563   I cid 5488  ran crn 5590  cres 5591  cfv 6433  2c2 12028  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  cusgrexi  27810  structtocusgr  27813
  Copyright terms: Public domain W3C validator