| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elss2prb | Structured version Visualization version GIF version | ||
| Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| elss2prb | ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6826 | . . 3 ⊢ (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2)) | |
| 2 | 1 | elrab 3645 | . 2 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
| 3 | hash2prb 14371 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
| 4 | elpwi 4555 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → 𝑃 ⊆ 𝑉) | |
| 5 | ssrexv 4002 | . . . . . . 7 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 7 | ssrexv 4002 | . . . . . . . 8 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
| 8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 9 | 8 | reximdv 3145 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 10 | 6, 9 | syld 47 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 11 | 3, 10 | sylbid 240 | . . . 4 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 12 | 11 | imp 406 | . . 3 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
| 13 | prelpwi 5386 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉) | |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉) |
| 15 | eleq1 2817 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) | |
| 16 | 15 | ad2antll 729 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) |
| 17 | 14, 16 | mpbird 257 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉) |
| 18 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) | |
| 19 | 18 | ad2antll 729 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) |
| 20 | hashprg 14294 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)) | |
| 21 | 20 | biimpcd 249 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
| 22 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
| 23 | 22 | impcom 407 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2) |
| 24 | 19, 23 | eqtrd 2765 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2) |
| 25 | 17, 24 | jca 511 | . . . . 5 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
| 26 | 25 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) |
| 27 | 26 | rexlimivv 3172 | . . 3 ⊢ (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
| 28 | 12, 27 | impbii 209 | . 2 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
| 29 | 2, 28 | bitri 275 | 1 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∃wrex 3054 {crab 3393 ⊆ wss 3900 𝒫 cpw 4548 {cpr 4576 ‘cfv 6477 2c2 12172 ♯chash 14229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-hash 14230 |
| This theorem is referenced by: hash2sspr 14388 exprelprel 14389 cusgredg 29395 paireqne 47521 |
| Copyright terms: Public domain | W3C validator |