MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elss2prb Structured version   Visualization version   GIF version

Theorem elss2prb 13835
Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
elss2prb (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Distinct variable groups:   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem elss2prb
StepHypRef Expression
1 fveqeq2 6665 . . 3 (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2))
21elrab 3671 . 2 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
3 hash2prb 13820 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
4 elpwi 4534 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉𝑃𝑉)
5 ssrexv 4022 . . . . . . 7 (𝑃𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
64, 5syl 17 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
7 ssrexv 4022 . . . . . . . 8 (𝑃𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
84, 7syl 17 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
98reximdv 3273 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
106, 9syld 47 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
113, 10sylbid 242 . . . 4 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
1211imp 409 . . 3 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
13 prelpwi 5326 . . . . . . . 8 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
1413adantr 483 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
15 eleq1 2900 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1615ad2antll 727 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1714, 16mpbird 259 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉)
18 fveq2 6656 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
1918ad2antll 727 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
20 hashprg 13746 . . . . . . . . . 10 ((𝑥𝑉𝑦𝑉) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
2120biimpcd 251 . . . . . . . . 9 (𝑥𝑦 → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2221adantr 483 . . . . . . . 8 ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2322impcom 410 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2)
2419, 23eqtrd 2856 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2)
2517, 24jca 514 . . . . 5 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2625ex 415 . . . 4 ((𝑥𝑉𝑦𝑉) → ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))
2726rexlimivv 3292 . . 3 (∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2812, 27impbii 211 . 2 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
292, 28bitri 277 1 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  {crab 3142  wss 3924  𝒫 cpw 4525  {cpr 4555  cfv 6341  2c2 11679  chash 13680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-dju 9316  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883  df-hash 13681
This theorem is referenced by:  hash2sspr  13836  exprelprel  13837  cusgredg  27192  paireqne  43758
  Copyright terms: Public domain W3C validator