Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elss2prb | Structured version Visualization version GIF version |
Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
elss2prb | ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6809 | . . 3 ⊢ (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2)) | |
2 | 1 | elrab 3629 | . 2 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
3 | hash2prb 14227 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
4 | elpwi 4546 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → 𝑃 ⊆ 𝑉) | |
5 | ssrexv 3993 | . . . . . . 7 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
7 | ssrexv 3993 | . . . . . . . 8 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
9 | 8 | reximdv 3164 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
10 | 6, 9 | syld 47 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
11 | 3, 10 | sylbid 240 | . . . 4 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
12 | 11 | imp 408 | . . 3 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
13 | prelpwi 5372 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉) | |
14 | 13 | adantr 482 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉) |
15 | eleq1 2824 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) | |
16 | 15 | ad2antll 727 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) |
17 | 14, 16 | mpbird 258 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉) |
18 | fveq2 6800 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) | |
19 | 18 | ad2antll 727 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) |
20 | hashprg 14151 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)) | |
21 | 20 | biimpcd 250 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
22 | 21 | adantr 482 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
23 | 22 | impcom 409 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2) |
24 | 19, 23 | eqtrd 2776 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2) |
25 | 17, 24 | jca 513 | . . . . 5 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
26 | 25 | ex 414 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) |
27 | 26 | rexlimivv 3193 | . . 3 ⊢ (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
28 | 12, 27 | impbii 208 | . 2 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
29 | 2, 28 | bitri 276 | 1 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∃wrex 3071 {crab 3284 ⊆ wss 3892 𝒫 cpw 4539 {cpr 4567 ‘cfv 6454 2c2 12070 ♯chash 14086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7616 ax-cnex 10969 ax-resscn 10970 ax-1cn 10971 ax-icn 10972 ax-addcl 10973 ax-addrcl 10974 ax-mulcl 10975 ax-mulrcl 10976 ax-mulcom 10977 ax-addass 10978 ax-mulass 10979 ax-distr 10980 ax-i2m1 10981 ax-1ne0 10982 ax-1rid 10983 ax-rnegex 10984 ax-rrecex 10985 ax-cnre 10986 ax-pre-lttri 10987 ax-pre-lttrn 10988 ax-pre-ltadd 10989 ax-pre-mulgt0 10990 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5496 df-eprel 5502 df-po 5510 df-so 5511 df-fr 5551 df-we 5553 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-pred 6213 df-ord 6280 df-on 6281 df-lim 6282 df-suc 6283 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-riota 7260 df-ov 7306 df-oprab 7307 df-mpo 7308 df-om 7741 df-1st 7859 df-2nd 7860 df-frecs 8124 df-wrecs 8155 df-recs 8229 df-rdg 8268 df-1o 8324 df-2o 8325 df-oadd 8328 df-er 8525 df-en 8761 df-dom 8762 df-sdom 8763 df-fin 8764 df-dju 9699 df-card 9737 df-pnf 11053 df-mnf 11054 df-xr 11055 df-ltxr 11056 df-le 11057 df-sub 11249 df-neg 11250 df-nn 12016 df-2 12078 df-n0 12276 df-z 12362 df-uz 12625 df-fz 13282 df-hash 14087 |
This theorem is referenced by: hash2sspr 14243 exprelprel 14244 cusgredg 27832 paireqne 45020 |
Copyright terms: Public domain | W3C validator |