MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elss2prb Structured version   Visualization version   GIF version

Theorem elss2prb 14199
Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
elss2prb (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Distinct variable groups:   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem elss2prb
StepHypRef Expression
1 fveqeq2 6780 . . 3 (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2))
21elrab 3626 . 2 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
3 hash2prb 14184 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
4 elpwi 4548 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉𝑃𝑉)
5 ssrexv 3993 . . . . . . 7 (𝑃𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
64, 5syl 17 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
7 ssrexv 3993 . . . . . . . 8 (𝑃𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
84, 7syl 17 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
98reximdv 3204 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
106, 9syld 47 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
113, 10sylbid 239 . . . 4 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
1211imp 407 . . 3 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
13 prelpwi 5367 . . . . . . . 8 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
1413adantr 481 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
15 eleq1 2828 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1615ad2antll 726 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1714, 16mpbird 256 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉)
18 fveq2 6771 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
1918ad2antll 726 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
20 hashprg 14108 . . . . . . . . . 10 ((𝑥𝑉𝑦𝑉) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
2120biimpcd 248 . . . . . . . . 9 (𝑥𝑦 → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2221adantr 481 . . . . . . . 8 ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2322impcom 408 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2)
2419, 23eqtrd 2780 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2)
2517, 24jca 512 . . . . 5 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2625ex 413 . . . 4 ((𝑥𝑉𝑦𝑉) → ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))
2726rexlimivv 3223 . . 3 (∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2812, 27impbii 208 . 2 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
292, 28bitri 274 1 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  wrex 3067  {crab 3070  wss 3892  𝒫 cpw 4539  {cpr 4569  cfv 6432  2c2 12028  chash 14042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-hash 14043
This theorem is referenced by:  hash2sspr  14200  exprelprel  14201  cusgredg  27789  paireqne  44932
  Copyright terms: Public domain W3C validator