MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elss2prb Structured version   Visualization version   GIF version

Theorem elss2prb 14129
Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
elss2prb (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Distinct variable groups:   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem elss2prb
StepHypRef Expression
1 fveqeq2 6765 . . 3 (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2))
21elrab 3617 . 2 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
3 hash2prb 14114 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
4 elpwi 4539 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉𝑃𝑉)
5 ssrexv 3984 . . . . . . 7 (𝑃𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
64, 5syl 17 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
7 ssrexv 3984 . . . . . . . 8 (𝑃𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
84, 7syl 17 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
98reximdv 3201 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
106, 9syld 47 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
113, 10sylbid 239 . . . 4 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
1211imp 406 . . 3 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
13 prelpwi 5357 . . . . . . . 8 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
1413adantr 480 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
15 eleq1 2826 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1615ad2antll 725 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1714, 16mpbird 256 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉)
18 fveq2 6756 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
1918ad2antll 725 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
20 hashprg 14038 . . . . . . . . . 10 ((𝑥𝑉𝑦𝑉) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
2120biimpcd 248 . . . . . . . . 9 (𝑥𝑦 → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2221adantr 480 . . . . . . . 8 ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2322impcom 407 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2)
2419, 23eqtrd 2778 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2)
2517, 24jca 511 . . . . 5 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2625ex 412 . . . 4 ((𝑥𝑉𝑦𝑉) → ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))
2726rexlimivv 3220 . . 3 (∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2812, 27impbii 208 . 2 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
292, 28bitri 274 1 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  wss 3883  𝒫 cpw 4530  {cpr 4560  cfv 6418  2c2 11958  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  hash2sspr  14130  exprelprel  14131  cusgredg  27694  paireqne  44851
  Copyright terms: Public domain W3C validator