![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elss2prb | Structured version Visualization version GIF version |
Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
elss2prb | ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6911 | . . 3 ⊢ (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2)) | |
2 | 1 | elrab 3684 | . 2 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
3 | hash2prb 14473 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
4 | elpwi 4613 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → 𝑃 ⊆ 𝑉) | |
5 | ssrexv 4051 | . . . . . . 7 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
7 | ssrexv 4051 | . . . . . . . 8 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
9 | 8 | reximdv 3167 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
10 | 6, 9 | syld 47 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
11 | 3, 10 | sylbid 239 | . . . 4 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
12 | 11 | imp 405 | . . 3 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
13 | prelpwi 5453 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉) | |
14 | 13 | adantr 479 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉) |
15 | eleq1 2817 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) | |
16 | 15 | ad2antll 727 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) |
17 | 14, 16 | mpbird 256 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉) |
18 | fveq2 6902 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) | |
19 | 18 | ad2antll 727 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) |
20 | hashprg 14394 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)) | |
21 | 20 | biimpcd 248 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
22 | 21 | adantr 479 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
23 | 22 | impcom 406 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2) |
24 | 19, 23 | eqtrd 2768 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2) |
25 | 17, 24 | jca 510 | . . . . 5 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
26 | 25 | ex 411 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) |
27 | 26 | rexlimivv 3197 | . . 3 ⊢ (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
28 | 12, 27 | impbii 208 | . 2 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
29 | 2, 28 | bitri 274 | 1 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∃wrex 3067 {crab 3430 ⊆ wss 3949 𝒫 cpw 4606 {cpr 4634 ‘cfv 6553 2c2 12305 ♯chash 14329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-oadd 8497 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-hash 14330 |
This theorem is referenced by: hash2sspr 14489 exprelprel 14490 cusgredg 29257 paireqne 46880 |
Copyright terms: Public domain | W3C validator |