| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elss2prb | Structured version Visualization version GIF version | ||
| Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| elss2prb | ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6896 | . . 3 ⊢ (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2)) | |
| 2 | 1 | elrab 3676 | . 2 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
| 3 | hash2prb 14494 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
| 4 | elpwi 4589 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → 𝑃 ⊆ 𝑉) | |
| 5 | ssrexv 4035 | . . . . . . 7 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 7 | ssrexv 4035 | . . . . . . . 8 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
| 8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 9 | 8 | reximdv 3157 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 10 | 6, 9 | syld 47 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 11 | 3, 10 | sylbid 240 | . . . 4 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
| 12 | 11 | imp 406 | . . 3 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
| 13 | prelpwi 5434 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉) | |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉) |
| 15 | eleq1 2821 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) | |
| 16 | 15 | ad2antll 729 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) |
| 17 | 14, 16 | mpbird 257 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉) |
| 18 | fveq2 6887 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) | |
| 19 | 18 | ad2antll 729 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) |
| 20 | hashprg 14417 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)) | |
| 21 | 20 | biimpcd 249 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
| 22 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
| 23 | 22 | impcom 407 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2) |
| 24 | 19, 23 | eqtrd 2769 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2) |
| 25 | 17, 24 | jca 511 | . . . . 5 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
| 26 | 25 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) |
| 27 | 26 | rexlimivv 3188 | . . 3 ⊢ (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
| 28 | 12, 27 | impbii 209 | . 2 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
| 29 | 2, 28 | bitri 275 | 1 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3420 ⊆ wss 3933 𝒫 cpw 4582 {cpr 4610 ‘cfv 6542 2c2 12304 ♯chash 14352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-oadd 8493 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-hash 14353 |
| This theorem is referenced by: hash2sspr 14511 exprelprel 14512 cusgredg 29388 paireqne 47444 |
| Copyright terms: Public domain | W3C validator |