MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elss2prb Structured version   Visualization version   GIF version

Theorem elss2prb 13841
Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
elss2prb (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Distinct variable groups:   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem elss2prb
StepHypRef Expression
1 fveqeq2 6654 . . 3 (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2))
21elrab 3628 . 2 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
3 hash2prb 13826 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
4 elpwi 4506 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉𝑃𝑉)
5 ssrexv 3982 . . . . . . 7 (𝑃𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
64, 5syl 17 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
7 ssrexv 3982 . . . . . . . 8 (𝑃𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
84, 7syl 17 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
98reximdv 3232 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
106, 9syld 47 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
113, 10sylbid 243 . . . 4 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
1211imp 410 . . 3 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
13 prelpwi 5305 . . . . . . . 8 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
1413adantr 484 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
15 eleq1 2877 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1615ad2antll 728 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1714, 16mpbird 260 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉)
18 fveq2 6645 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
1918ad2antll 728 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
20 hashprg 13752 . . . . . . . . . 10 ((𝑥𝑉𝑦𝑉) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
2120biimpcd 252 . . . . . . . . 9 (𝑥𝑦 → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2221adantr 484 . . . . . . . 8 ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2322impcom 411 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2)
2419, 23eqtrd 2833 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2)
2517, 24jca 515 . . . . 5 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2625ex 416 . . . 4 ((𝑥𝑉𝑦𝑉) → ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))
2726rexlimivv 3251 . . 3 (∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2812, 27impbii 212 . 2 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
292, 28bitri 278 1 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  {crab 3110  wss 3881  𝒫 cpw 4497  {cpr 4527  cfv 6324  2c2 11680  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687
This theorem is referenced by:  hash2sspr  13842  exprelprel  13843  cusgredg  27214  paireqne  44028
  Copyright terms: Public domain W3C validator