Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elss2prb | Structured version Visualization version GIF version |
Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
elss2prb | ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6780 | . . 3 ⊢ (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2)) | |
2 | 1 | elrab 3626 | . 2 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
3 | hash2prb 14184 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
4 | elpwi 4548 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → 𝑃 ⊆ 𝑉) | |
5 | ssrexv 3993 | . . . . . . 7 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
7 | ssrexv 3993 | . . . . . . . 8 ⊢ (𝑃 ⊆ 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
9 | 8 | reximdv 3204 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
10 | 6, 9 | syld 47 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
11 | 3, 10 | sylbid 239 | . . . 4 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) |
12 | 11 | imp 407 | . . 3 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
13 | prelpwi 5367 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉) | |
14 | 13 | adantr 481 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉) |
15 | eleq1 2828 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) | |
16 | 15 | ad2antll 726 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉)) |
17 | 14, 16 | mpbird 256 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉) |
18 | fveq2 6771 | . . . . . . . 8 ⊢ (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) | |
19 | 18 | ad2antll 726 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦})) |
20 | hashprg 14108 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)) | |
21 | 20 | biimpcd 248 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
22 | 21 | adantr 481 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (♯‘{𝑥, 𝑦}) = 2)) |
23 | 22 | impcom 408 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2) |
24 | 19, 23 | eqtrd 2780 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2) |
25 | 17, 24 | jca 512 | . . . . 5 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
26 | 25 | ex 413 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) |
27 | 26 | rexlimivv 3223 | . . 3 ⊢ (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
28 | 12, 27 | impbii 208 | . 2 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
29 | 2, 28 | bitri 274 | 1 ⊢ (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∃wrex 3067 {crab 3070 ⊆ wss 3892 𝒫 cpw 4539 {cpr 4569 ‘cfv 6432 2c2 12028 ♯chash 14042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-oadd 8292 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-dju 9660 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-hash 14043 |
This theorem is referenced by: hash2sspr 14200 exprelprel 14201 cusgredg 27789 paireqne 44932 |
Copyright terms: Public domain | W3C validator |