MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elss2prb Structured version   Visualization version   GIF version

Theorem elss2prb 14387
Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
elss2prb (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Distinct variable groups:   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem elss2prb
StepHypRef Expression
1 fveqeq2 6826 . . 3 (𝑧 = 𝑃 → ((♯‘𝑧) = 2 ↔ (♯‘𝑃) = 2))
21elrab 3645 . 2 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
3 hash2prb 14371 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
4 elpwi 4555 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉𝑃𝑉)
5 ssrexv 4002 . . . . . . 7 (𝑃𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
64, 5syl 17 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
7 ssrexv 4002 . . . . . . . 8 (𝑃𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
84, 7syl 17 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉 → (∃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
98reximdv 3145 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑉𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
106, 9syld 47 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
113, 10sylbid 240 . . . 4 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
1211imp 406 . . 3 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
13 prelpwi 5386 . . . . . . . 8 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
1413adantr 480 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
15 eleq1 2817 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1615ad2antll 729 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦} ∈ 𝒫 𝑉))
1714, 16mpbird 257 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → 𝑃 ∈ 𝒫 𝑉)
18 fveq2 6817 . . . . . . . 8 (𝑃 = {𝑥, 𝑦} → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
1918ad2antll 729 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = (♯‘{𝑥, 𝑦}))
20 hashprg 14294 . . . . . . . . . 10 ((𝑥𝑉𝑦𝑉) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
2120biimpcd 249 . . . . . . . . 9 (𝑥𝑦 → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2221adantr 480 . . . . . . . 8 ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑥𝑉𝑦𝑉) → (♯‘{𝑥, 𝑦}) = 2))
2322impcom 407 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘{𝑥, 𝑦}) = 2)
2419, 23eqtrd 2765 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (♯‘𝑃) = 2)
2517, 24jca 511 . . . . 5 (((𝑥𝑉𝑦𝑉) ∧ (𝑥𝑦𝑃 = {𝑥, 𝑦})) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2625ex 412 . . . 4 ((𝑥𝑉𝑦𝑉) → ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))
2726rexlimivv 3172 . . 3 (∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
2812, 27impbii 209 . 2 ((𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2) ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
292, 28bitri 275 1 (𝑃 ∈ {𝑧 ∈ 𝒫 𝑉 ∣ (♯‘𝑧) = 2} ↔ ∃𝑥𝑉𝑦𝑉 (𝑥𝑦𝑃 = {𝑥, 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wrex 3054  {crab 3393  wss 3900  𝒫 cpw 4548  {cpr 4576  cfv 6477  2c2 12172  chash 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-hash 14230
This theorem is referenced by:  hash2sspr  14388  exprelprel  14389  cusgredg  29395  paireqne  47521
  Copyright terms: Public domain W3C validator