MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem6 Structured version   Visualization version   GIF version

Theorem 3wlkdlem6 30019
Description: Lemma 6 for 3wlkd 30024. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
Assertion
Ref Expression
3wlkdlem6 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))

Proof of Theorem 3wlkdlem6
StepHypRef Expression
1 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
41, 2, 33wlkdlem3 30015 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 3wlkd.e . . . . 5 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
6 preq12 4735 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵})
76sseq1d 4004 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
87adantr 479 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
9 preq12 4735 . . . . . . . 8 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
109ad2ant2lr 746 . . . . . . 7 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
1110sseq1d 4004 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ↔ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
12 preq12 4735 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷})
1312sseq1d 4004 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
1413adantl 480 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
158, 11, 143anbi123d 1432 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿))))
165, 15syl5ibrcom 246 . . . 4 (𝜑 → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))))
174, 16mpd 15 . . 3 (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)))
18 fvex 6905 . . . . . 6 (𝑃‘0) ∈ V
19 fvex 6905 . . . . . 6 (𝑃‘1) ∈ V
2018, 19prss 4819 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽))
21 simpl 481 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) → (𝑃‘0) ∈ (𝐼𝐽))
2220, 21sylbir 234 . . . 4 ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) → (𝑃‘0) ∈ (𝐼𝐽))
23 fvex 6905 . . . . . 6 (𝑃‘2) ∈ V
2419, 23prss 4819 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾))
25 simpl 481 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) → (𝑃‘1) ∈ (𝐼𝐾))
2624, 25sylbir 234 . . . 4 ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) → (𝑃‘1) ∈ (𝐼𝐾))
27 fvex 6905 . . . . . 6 (𝑃‘3) ∈ V
2823, 27prss 4819 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))
29 simpl 481 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) → (𝑃‘2) ∈ (𝐼𝐿))
3028, 29sylbir 234 . . . 4 ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) → (𝑃‘2) ∈ (𝐼𝐿))
3122, 26, 303anim123i 1148 . . 3 (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
3217, 31syl 17 . 2 (𝜑 → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
33 eleq1 2813 . . . . . . 7 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3433adantr 479 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3534adantr 479 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
36 eleq1 2813 . . . . . . 7 ((𝑃‘1) = 𝐵 → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3736adantl 480 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3837adantr 479 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
39 eleq1 2813 . . . . . . 7 ((𝑃‘2) = 𝐶 → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4039adantr 479 . . . . . 6 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4140adantl 480 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4235, 38, 413anbi123d 1432 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)) ↔ (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿))))
4342bicomd 222 . . 3 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
444, 43syl 17 . 2 (𝜑 → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
4532, 44mpbird 256 1 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  wss 3939  {cpr 4626  cfv 6543  0cc0 11138  1c1 11139  2c2 12297  3c3 12298  ⟨“cs3 14825  ⟨“cs4 14826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-concat 14553  df-s1 14578  df-s2 14831  df-s3 14832  df-s4 14833
This theorem is referenced by:  3wlkdlem7  30020
  Copyright terms: Public domain W3C validator