Proof of Theorem 3wlkdlem6
| Step | Hyp | Ref
| Expression |
| 1 | | 3wlkd.p |
. . . . 5
⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
| 2 | | 3wlkd.f |
. . . . 5
⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
| 3 | | 3wlkd.s |
. . . . 5
⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 4 | 1, 2, 3 | 3wlkdlem3 30142 |
. . . 4
⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
| 5 | | 3wlkd.e |
. . . . 5
⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
| 6 | | preq12 4711 |
. . . . . . . 8
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵}) |
| 7 | 6 | sseq1d 3990 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼‘𝐽))) |
| 8 | 7 | adantr 480 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼‘𝐽))) |
| 9 | | preq12 4711 |
. . . . . . . 8
⊢ (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶}) |
| 10 | 9 | ad2ant2lr 748 |
. . . . . . 7
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶}) |
| 11 | 10 | sseq1d 3990 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ↔ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 12 | | preq12 4711 |
. . . . . . . 8
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷}) |
| 13 | 12 | sseq1d 3990 |
. . . . . . 7
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
| 14 | 13 | adantl 481 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
| 15 | 8, 11, 14 | 3anbi123d 1438 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿)) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿)))) |
| 16 | 5, 15 | syl5ibrcom 247 |
. . . 4
⊢ (𝜑 → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿)))) |
| 17 | 4, 16 | mpd 15 |
. . 3
⊢ (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿))) |
| 18 | | fvex 6889 |
. . . . . 6
⊢ (𝑃‘0) ∈
V |
| 19 | | fvex 6889 |
. . . . . 6
⊢ (𝑃‘1) ∈
V |
| 20 | 18, 19 | prss 4796 |
. . . . 5
⊢ (((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐽)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽)) |
| 21 | | simpl 482 |
. . . . 5
⊢ (((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐽)) → (𝑃‘0) ∈ (𝐼‘𝐽)) |
| 22 | 20, 21 | sylbir 235 |
. . . 4
⊢ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) → (𝑃‘0) ∈ (𝐼‘𝐽)) |
| 23 | | fvex 6889 |
. . . . . 6
⊢ (𝑃‘2) ∈
V |
| 24 | 19, 23 | prss 4796 |
. . . . 5
⊢ (((𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐾)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾)) |
| 25 | | simpl 482 |
. . . . 5
⊢ (((𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐾)) → (𝑃‘1) ∈ (𝐼‘𝐾)) |
| 26 | 24, 25 | sylbir 235 |
. . . 4
⊢ ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) → (𝑃‘1) ∈ (𝐼‘𝐾)) |
| 27 | | fvex 6889 |
. . . . . 6
⊢ (𝑃‘3) ∈
V |
| 28 | 23, 27 | prss 4796 |
. . . . 5
⊢ (((𝑃‘2) ∈ (𝐼‘𝐿) ∧ (𝑃‘3) ∈ (𝐼‘𝐿)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿)) |
| 29 | | simpl 482 |
. . . . 5
⊢ (((𝑃‘2) ∈ (𝐼‘𝐿) ∧ (𝑃‘3) ∈ (𝐼‘𝐿)) → (𝑃‘2) ∈ (𝐼‘𝐿)) |
| 30 | 28, 29 | sylbir 235 |
. . . 4
⊢ ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿) → (𝑃‘2) ∈ (𝐼‘𝐿)) |
| 31 | 22, 26, 30 | 3anim123i 1151 |
. . 3
⊢ (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿)) → ((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿))) |
| 32 | 17, 31 | syl 17 |
. 2
⊢ (𝜑 → ((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿))) |
| 33 | | eleq1 2822 |
. . . . . . 7
⊢ ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ (𝐼‘𝐽) ↔ 𝐴 ∈ (𝐼‘𝐽))) |
| 34 | 33 | adantr 480 |
. . . . . 6
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ (𝐼‘𝐽) ↔ 𝐴 ∈ (𝐼‘𝐽))) |
| 35 | 34 | adantr 480 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ∈ (𝐼‘𝐽) ↔ 𝐴 ∈ (𝐼‘𝐽))) |
| 36 | | eleq1 2822 |
. . . . . . 7
⊢ ((𝑃‘1) = 𝐵 → ((𝑃‘1) ∈ (𝐼‘𝐾) ↔ 𝐵 ∈ (𝐼‘𝐾))) |
| 37 | 36 | adantl 481 |
. . . . . 6
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ (𝐼‘𝐾) ↔ 𝐵 ∈ (𝐼‘𝐾))) |
| 38 | 37 | adantr 480 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ∈ (𝐼‘𝐾) ↔ 𝐵 ∈ (𝐼‘𝐾))) |
| 39 | | eleq1 2822 |
. . . . . . 7
⊢ ((𝑃‘2) = 𝐶 → ((𝑃‘2) ∈ (𝐼‘𝐿) ↔ 𝐶 ∈ (𝐼‘𝐿))) |
| 40 | 39 | adantr 480 |
. . . . . 6
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ (𝐼‘𝐿) ↔ 𝐶 ∈ (𝐼‘𝐿))) |
| 41 | 40 | adantl 481 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ (𝐼‘𝐿) ↔ 𝐶 ∈ (𝐼‘𝐿))) |
| 42 | 35, 38, 41 | 3anbi123d 1438 |
. . . 4
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿)) ↔ (𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿)))) |
| 43 | 42 | bicomd 223 |
. . 3
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿)) ↔ ((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿)))) |
| 44 | 4, 43 | syl 17 |
. 2
⊢ (𝜑 → ((𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿)) ↔ ((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿)))) |
| 45 | 32, 44 | mpbird 257 |
1
⊢ (𝜑 → (𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿))) |