MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem6 Structured version   Visualization version   GIF version

Theorem 3wlkdlem6 27859
Description: Lemma 6 for 3wlkd 27864. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
Assertion
Ref Expression
3wlkdlem6 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))

Proof of Theorem 3wlkdlem6
StepHypRef Expression
1 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
41, 2, 33wlkdlem3 27855 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 3wlkd.e . . . . 5 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
6 preq12 4669 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵})
76sseq1d 4001 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
87adantr 481 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
9 preq12 4669 . . . . . . . 8 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
109ad2ant2lr 744 . . . . . . 7 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
1110sseq1d 4001 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ↔ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
12 preq12 4669 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷})
1312sseq1d 4001 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
1413adantl 482 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
158, 11, 143anbi123d 1429 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿))))
165, 15syl5ibrcom 248 . . . 4 (𝜑 → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))))
174, 16mpd 15 . . 3 (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)))
18 fvex 6679 . . . . . 6 (𝑃‘0) ∈ V
19 fvex 6679 . . . . . 6 (𝑃‘1) ∈ V
2018, 19prss 4751 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽))
21 simpl 483 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) → (𝑃‘0) ∈ (𝐼𝐽))
2220, 21sylbir 236 . . . 4 ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) → (𝑃‘0) ∈ (𝐼𝐽))
23 fvex 6679 . . . . . 6 (𝑃‘2) ∈ V
2419, 23prss 4751 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾))
25 simpl 483 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) → (𝑃‘1) ∈ (𝐼𝐾))
2624, 25sylbir 236 . . . 4 ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) → (𝑃‘1) ∈ (𝐼𝐾))
27 fvex 6679 . . . . . 6 (𝑃‘3) ∈ V
2823, 27prss 4751 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))
29 simpl 483 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) → (𝑃‘2) ∈ (𝐼𝐿))
3028, 29sylbir 236 . . . 4 ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) → (𝑃‘2) ∈ (𝐼𝐿))
3122, 26, 303anim123i 1145 . . 3 (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
3217, 31syl 17 . 2 (𝜑 → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
33 eleq1 2904 . . . . . . 7 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3433adantr 481 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3534adantr 481 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
36 eleq1 2904 . . . . . . 7 ((𝑃‘1) = 𝐵 → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3736adantl 482 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3837adantr 481 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
39 eleq1 2904 . . . . . . 7 ((𝑃‘2) = 𝐶 → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4039adantr 481 . . . . . 6 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4140adantl 482 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4235, 38, 413anbi123d 1429 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)) ↔ (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿))))
4342bicomd 224 . . 3 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
444, 43syl 17 . 2 (𝜑 → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
4532, 44mpbird 258 1 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wne 3020  wss 3939  {cpr 4565  cfv 6351  0cc0 10529  1c1 10530  2c2 11684  3c3 11685  ⟨“cs3 14197  ⟨“cs4 14198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-hash 13684  df-word 13855  df-concat 13916  df-s1 13943  df-s2 14203  df-s3 14204  df-s4 14205
This theorem is referenced by:  3wlkdlem7  27860
  Copyright terms: Public domain W3C validator