Proof of Theorem 3wlkdlem6
Step | Hyp | Ref
| Expression |
1 | | 3wlkd.p |
. . . . 5
⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
2 | | 3wlkd.f |
. . . . 5
⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
3 | | 3wlkd.s |
. . . . 5
⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
4 | 1, 2, 3 | 3wlkdlem3 28038 |
. . . 4
⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
5 | | 3wlkd.e |
. . . . 5
⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
6 | | preq12 4629 |
. . . . . . . 8
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵}) |
7 | 6 | sseq1d 3924 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼‘𝐽))) |
8 | 7 | adantr 485 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼‘𝐽))) |
9 | | preq12 4629 |
. . . . . . . 8
⊢ (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶}) |
10 | 9 | ad2ant2lr 748 |
. . . . . . 7
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶}) |
11 | 10 | sseq1d 3924 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ↔ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
12 | | preq12 4629 |
. . . . . . . 8
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷}) |
13 | 12 | sseq1d 3924 |
. . . . . . 7
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
14 | 13 | adantl 486 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
15 | 8, 11, 14 | 3anbi123d 1434 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿)) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿)))) |
16 | 5, 15 | syl5ibrcom 250 |
. . . 4
⊢ (𝜑 → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿)))) |
17 | 4, 16 | mpd 15 |
. . 3
⊢ (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿))) |
18 | | fvex 6672 |
. . . . . 6
⊢ (𝑃‘0) ∈
V |
19 | | fvex 6672 |
. . . . . 6
⊢ (𝑃‘1) ∈
V |
20 | 18, 19 | prss 4711 |
. . . . 5
⊢ (((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐽)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽)) |
21 | | simpl 487 |
. . . . 5
⊢ (((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐽)) → (𝑃‘0) ∈ (𝐼‘𝐽)) |
22 | 20, 21 | sylbir 238 |
. . . 4
⊢ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) → (𝑃‘0) ∈ (𝐼‘𝐽)) |
23 | | fvex 6672 |
. . . . . 6
⊢ (𝑃‘2) ∈
V |
24 | 19, 23 | prss 4711 |
. . . . 5
⊢ (((𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐾)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾)) |
25 | | simpl 487 |
. . . . 5
⊢ (((𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐾)) → (𝑃‘1) ∈ (𝐼‘𝐾)) |
26 | 24, 25 | sylbir 238 |
. . . 4
⊢ ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) → (𝑃‘1) ∈ (𝐼‘𝐾)) |
27 | | fvex 6672 |
. . . . . 6
⊢ (𝑃‘3) ∈
V |
28 | 23, 27 | prss 4711 |
. . . . 5
⊢ (((𝑃‘2) ∈ (𝐼‘𝐿) ∧ (𝑃‘3) ∈ (𝐼‘𝐿)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿)) |
29 | | simpl 487 |
. . . . 5
⊢ (((𝑃‘2) ∈ (𝐼‘𝐿) ∧ (𝑃‘3) ∈ (𝐼‘𝐿)) → (𝑃‘2) ∈ (𝐼‘𝐿)) |
30 | 28, 29 | sylbir 238 |
. . . 4
⊢ ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿) → (𝑃‘2) ∈ (𝐼‘𝐿)) |
31 | 22, 26, 30 | 3anim123i 1149 |
. . 3
⊢ (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘𝐿)) → ((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿))) |
32 | 17, 31 | syl 17 |
. 2
⊢ (𝜑 → ((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿))) |
33 | | eleq1 2840 |
. . . . . . 7
⊢ ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ (𝐼‘𝐽) ↔ 𝐴 ∈ (𝐼‘𝐽))) |
34 | 33 | adantr 485 |
. . . . . 6
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ (𝐼‘𝐽) ↔ 𝐴 ∈ (𝐼‘𝐽))) |
35 | 34 | adantr 485 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ∈ (𝐼‘𝐽) ↔ 𝐴 ∈ (𝐼‘𝐽))) |
36 | | eleq1 2840 |
. . . . . . 7
⊢ ((𝑃‘1) = 𝐵 → ((𝑃‘1) ∈ (𝐼‘𝐾) ↔ 𝐵 ∈ (𝐼‘𝐾))) |
37 | 36 | adantl 486 |
. . . . . 6
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ (𝐼‘𝐾) ↔ 𝐵 ∈ (𝐼‘𝐾))) |
38 | 37 | adantr 485 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ∈ (𝐼‘𝐾) ↔ 𝐵 ∈ (𝐼‘𝐾))) |
39 | | eleq1 2840 |
. . . . . . 7
⊢ ((𝑃‘2) = 𝐶 → ((𝑃‘2) ∈ (𝐼‘𝐿) ↔ 𝐶 ∈ (𝐼‘𝐿))) |
40 | 39 | adantr 485 |
. . . . . 6
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ (𝐼‘𝐿) ↔ 𝐶 ∈ (𝐼‘𝐿))) |
41 | 40 | adantl 486 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ (𝐼‘𝐿) ↔ 𝐶 ∈ (𝐼‘𝐿))) |
42 | 35, 38, 41 | 3anbi123d 1434 |
. . . 4
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿)) ↔ (𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿)))) |
43 | 42 | bicomd 226 |
. . 3
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿)) ↔ ((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿)))) |
44 | 4, 43 | syl 17 |
. 2
⊢ (𝜑 → ((𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿)) ↔ ((𝑃‘0) ∈ (𝐼‘𝐽) ∧ (𝑃‘1) ∈ (𝐼‘𝐾) ∧ (𝑃‘2) ∈ (𝐼‘𝐿)))) |
45 | 32, 44 | mpbird 260 |
1
⊢ (𝜑 → (𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿))) |