MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem6 Structured version   Visualization version   GIF version

Theorem 3wlkdlem6 30127
Description: Lemma 6 for 3wlkd 30132. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
Assertion
Ref Expression
3wlkdlem6 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))

Proof of Theorem 3wlkdlem6
StepHypRef Expression
1 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
41, 2, 33wlkdlem3 30123 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 3wlkd.e . . . . 5 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
6 preq12 4689 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵})
76sseq1d 3969 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
87adantr 480 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
9 preq12 4689 . . . . . . . 8 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
109ad2ant2lr 748 . . . . . . 7 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
1110sseq1d 3969 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ↔ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
12 preq12 4689 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷})
1312sseq1d 3969 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
1413adantl 481 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
158, 11, 143anbi123d 1438 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿))))
165, 15syl5ibrcom 247 . . . 4 (𝜑 → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))))
174, 16mpd 15 . . 3 (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)))
18 fvex 6839 . . . . . 6 (𝑃‘0) ∈ V
19 fvex 6839 . . . . . 6 (𝑃‘1) ∈ V
2018, 19prss 4774 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽))
21 simpl 482 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) → (𝑃‘0) ∈ (𝐼𝐽))
2220, 21sylbir 235 . . . 4 ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) → (𝑃‘0) ∈ (𝐼𝐽))
23 fvex 6839 . . . . . 6 (𝑃‘2) ∈ V
2419, 23prss 4774 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾))
25 simpl 482 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) → (𝑃‘1) ∈ (𝐼𝐾))
2624, 25sylbir 235 . . . 4 ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) → (𝑃‘1) ∈ (𝐼𝐾))
27 fvex 6839 . . . . . 6 (𝑃‘3) ∈ V
2823, 27prss 4774 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))
29 simpl 482 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) → (𝑃‘2) ∈ (𝐼𝐿))
3028, 29sylbir 235 . . . 4 ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) → (𝑃‘2) ∈ (𝐼𝐿))
3122, 26, 303anim123i 1151 . . 3 (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
3217, 31syl 17 . 2 (𝜑 → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
33 eleq1 2816 . . . . . . 7 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3433adantr 480 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3534adantr 480 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
36 eleq1 2816 . . . . . . 7 ((𝑃‘1) = 𝐵 → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3736adantl 481 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3837adantr 480 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
39 eleq1 2816 . . . . . . 7 ((𝑃‘2) = 𝐶 → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4039adantr 480 . . . . . 6 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4140adantl 481 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4235, 38, 413anbi123d 1438 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)) ↔ (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿))))
4342bicomd 223 . . 3 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
444, 43syl 17 . 2 (𝜑 → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
4532, 44mpbird 257 1 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3905  {cpr 4581  cfv 6486  0cc0 11028  1c1 11029  2c2 12201  3c3 12202  ⟨“cs3 14767  ⟨“cs4 14768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-s4 14775
This theorem is referenced by:  3wlkdlem7  30128
  Copyright terms: Public domain W3C validator