MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem6 Structured version   Visualization version   GIF version

Theorem 3wlkdlem6 30197
Description: Lemma 6 for 3wlkd 30202. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
Assertion
Ref Expression
3wlkdlem6 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))

Proof of Theorem 3wlkdlem6
StepHypRef Expression
1 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
41, 2, 33wlkdlem3 30193 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 3wlkd.e . . . . 5 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
6 preq12 4760 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵})
76sseq1d 4040 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
87adantr 480 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
9 preq12 4760 . . . . . . . 8 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
109ad2ant2lr 747 . . . . . . 7 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
1110sseq1d 4040 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ↔ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
12 preq12 4760 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷})
1312sseq1d 4040 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
1413adantl 481 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
158, 11, 143anbi123d 1436 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿))))
165, 15syl5ibrcom 247 . . . 4 (𝜑 → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))))
174, 16mpd 15 . . 3 (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)))
18 fvex 6933 . . . . . 6 (𝑃‘0) ∈ V
19 fvex 6933 . . . . . 6 (𝑃‘1) ∈ V
2018, 19prss 4845 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽))
21 simpl 482 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) → (𝑃‘0) ∈ (𝐼𝐽))
2220, 21sylbir 235 . . . 4 ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) → (𝑃‘0) ∈ (𝐼𝐽))
23 fvex 6933 . . . . . 6 (𝑃‘2) ∈ V
2419, 23prss 4845 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾))
25 simpl 482 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) → (𝑃‘1) ∈ (𝐼𝐾))
2624, 25sylbir 235 . . . 4 ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) → (𝑃‘1) ∈ (𝐼𝐾))
27 fvex 6933 . . . . . 6 (𝑃‘3) ∈ V
2823, 27prss 4845 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))
29 simpl 482 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) → (𝑃‘2) ∈ (𝐼𝐿))
3028, 29sylbir 235 . . . 4 ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) → (𝑃‘2) ∈ (𝐼𝐿))
3122, 26, 303anim123i 1151 . . 3 (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
3217, 31syl 17 . 2 (𝜑 → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
33 eleq1 2832 . . . . . . 7 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3433adantr 480 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3534adantr 480 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
36 eleq1 2832 . . . . . . 7 ((𝑃‘1) = 𝐵 → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3736adantl 481 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3837adantr 480 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
39 eleq1 2832 . . . . . . 7 ((𝑃‘2) = 𝐶 → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4039adantr 480 . . . . . 6 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4140adantl 481 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4235, 38, 413anbi123d 1436 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)) ↔ (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿))))
4342bicomd 223 . . 3 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
444, 43syl 17 . 2 (𝜑 → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
4532, 44mpbird 257 1 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wss 3976  {cpr 4650  cfv 6573  0cc0 11184  1c1 11185  2c2 12348  3c3 12349  ⟨“cs3 14891  ⟨“cs4 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-s4 14899
This theorem is referenced by:  3wlkdlem7  30198
  Copyright terms: Public domain W3C validator