Proof of Theorem imarnf1pr
Step | Hyp | Ref
| Expression |
1 | | ffn 6498 |
. . . . . . . . 9
⊢ (𝐸:dom 𝐸⟶𝑅 → 𝐸 Fn dom 𝐸) |
2 | 1 | adantl 485 |
. . . . . . . 8
⊢ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) → 𝐸 Fn dom 𝐸) |
3 | 2 | adantr 484 |
. . . . . . 7
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝐸 Fn dom 𝐸) |
4 | | simpll 766 |
. . . . . . . 8
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝐹:{𝑋, 𝑌}⟶dom 𝐸) |
5 | | prid1g 4653 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋, 𝑌}) |
6 | 5 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → 𝑋 ∈ {𝑋, 𝑌}) |
7 | 6 | adantl 485 |
. . . . . . . 8
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝑋 ∈ {𝑋, 𝑌}) |
8 | 4, 7 | ffvelrnd 6843 |
. . . . . . 7
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → (𝐹‘𝑋) ∈ dom 𝐸) |
9 | | prid2g 4654 |
. . . . . . . . 9
⊢ (𝑌 ∈ 𝑊 → 𝑌 ∈ {𝑋, 𝑌}) |
10 | 9 | ad2antll 728 |
. . . . . . . 8
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝑌 ∈ {𝑋, 𝑌}) |
11 | 4, 10 | ffvelrnd 6843 |
. . . . . . 7
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → (𝐹‘𝑌) ∈ dom 𝐸) |
12 | | fnimapr 6736 |
. . . . . . 7
⊢ ((𝐸 Fn dom 𝐸 ∧ (𝐹‘𝑋) ∈ dom 𝐸 ∧ (𝐹‘𝑌) ∈ dom 𝐸) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))}) |
13 | 3, 8, 11, 12 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))}) |
14 | 13 | ex 416 |
. . . . 5
⊢ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))})) |
15 | 14 | adantr 484 |
. . . 4
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))})) |
16 | 15 | impcom 411 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))}) |
17 | | ffn 6498 |
. . . . . . . . 9
⊢ (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → 𝐹 Fn {𝑋, 𝑌}) |
18 | | rnfdmpr 44205 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) |
19 | 17, 18 | syl5com 31 |
. . . . . . . 8
⊢ (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) |
20 | 19 | adantr 484 |
. . . . . . 7
⊢ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) |
21 | 20 | adantr 484 |
. . . . . 6
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) |
22 | 21 | impcom 411 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)}) |
23 | 22 | eqcomd 2764 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → {(𝐹‘𝑋), (𝐹‘𝑌)} = ran 𝐹) |
24 | 23 | imaeq2d 5901 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = (𝐸 “ ran 𝐹)) |
25 | | preq12 4628 |
. . . 4
⊢ (((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵) → {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))} = {𝐴, 𝐵}) |
26 | 25 | ad2antll 728 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))} = {𝐴, 𝐵}) |
27 | 16, 24, 26 | 3eqtr3d 2801 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}) |
28 | 27 | ex 416 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})) |