Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imarnf1pr Structured version   Visualization version   GIF version

Theorem imarnf1pr 47392
Description: The image of the range of a function 𝐹 under a function 𝐸 if 𝐹 is a function from a pair into the domain of 𝐸. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
imarnf1pr ((𝑋𝑉𝑌𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}))

Proof of Theorem imarnf1pr
StepHypRef Expression
1 ffn 6651 . . . . . . . . 9 (𝐸:dom 𝐸𝑅𝐸 Fn dom 𝐸)
21adantl 481 . . . . . . . 8 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → 𝐸 Fn dom 𝐸)
32adantr 480 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝐸 Fn dom 𝐸)
4 simpll 766 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝐹:{𝑋, 𝑌}⟶dom 𝐸)
5 prid1g 4710 . . . . . . . . . 10 (𝑋𝑉𝑋 ∈ {𝑋, 𝑌})
65adantr 480 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → 𝑋 ∈ {𝑋, 𝑌})
76adantl 481 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝑋 ∈ {𝑋, 𝑌})
84, 7ffvelcdmd 7018 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐹𝑋) ∈ dom 𝐸)
9 prid2g 4711 . . . . . . . . 9 (𝑌𝑊𝑌 ∈ {𝑋, 𝑌})
109ad2antll 729 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝑌 ∈ {𝑋, 𝑌})
114, 10ffvelcdmd 7018 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐹𝑌) ∈ dom 𝐸)
12 fnimapr 6905 . . . . . . 7 ((𝐸 Fn dom 𝐸 ∧ (𝐹𝑋) ∈ dom 𝐸 ∧ (𝐹𝑌) ∈ dom 𝐸) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
133, 8, 11, 12syl3anc 1373 . . . . . 6 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
1413ex 412 . . . . 5 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → ((𝑋𝑉𝑌𝑊) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))}))
1514adantr 480 . . . 4 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → ((𝑋𝑉𝑌𝑊) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))}))
1615impcom 407 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
17 ffn 6651 . . . . . . . . 9 (𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐹 Fn {𝑋, 𝑌})
18 rnfdmpr 47391 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
1917, 18syl5com 31 . . . . . . . 8 (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2019adantr 480 . . . . . . 7 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2120adantr 480 . . . . . 6 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2221impcom 407 . . . . 5 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)})
2322eqcomd 2737 . . . 4 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → {(𝐹𝑋), (𝐹𝑌)} = ran 𝐹)
2423imaeq2d 6008 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = (𝐸 “ ran 𝐹))
25 preq12 4685 . . . 4 (((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵) → {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))} = {𝐴, 𝐵})
2625ad2antll 729 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))} = {𝐴, 𝐵})
2716, 24, 263eqtr3d 2774 . 2 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})
2827ex 412 1 ((𝑋𝑉𝑌𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cpr 4575  dom cdm 5614  ran crn 5615  cima 5617   Fn wfn 6476  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator