Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imarnf1pr Structured version   Visualization version   GIF version

Theorem imarnf1pr 44832
Description: The image of the range of a function 𝐹 under a function 𝐸 if 𝐹 is a function from a pair into the domain of 𝐸. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
imarnf1pr ((𝑋𝑉𝑌𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}))

Proof of Theorem imarnf1pr
StepHypRef Expression
1 ffn 6630 . . . . . . . . 9 (𝐸:dom 𝐸𝑅𝐸 Fn dom 𝐸)
21adantl 483 . . . . . . . 8 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → 𝐸 Fn dom 𝐸)
32adantr 482 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝐸 Fn dom 𝐸)
4 simpll 765 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝐹:{𝑋, 𝑌}⟶dom 𝐸)
5 prid1g 4700 . . . . . . . . . 10 (𝑋𝑉𝑋 ∈ {𝑋, 𝑌})
65adantr 482 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → 𝑋 ∈ {𝑋, 𝑌})
76adantl 483 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝑋 ∈ {𝑋, 𝑌})
84, 7ffvelcdmd 6994 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐹𝑋) ∈ dom 𝐸)
9 prid2g 4701 . . . . . . . . 9 (𝑌𝑊𝑌 ∈ {𝑋, 𝑌})
109ad2antll 727 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝑌 ∈ {𝑋, 𝑌})
114, 10ffvelcdmd 6994 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐹𝑌) ∈ dom 𝐸)
12 fnimapr 6884 . . . . . . 7 ((𝐸 Fn dom 𝐸 ∧ (𝐹𝑋) ∈ dom 𝐸 ∧ (𝐹𝑌) ∈ dom 𝐸) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
133, 8, 11, 12syl3anc 1371 . . . . . 6 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
1413ex 414 . . . . 5 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → ((𝑋𝑉𝑌𝑊) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))}))
1514adantr 482 . . . 4 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → ((𝑋𝑉𝑌𝑊) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))}))
1615impcom 409 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
17 ffn 6630 . . . . . . . . 9 (𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐹 Fn {𝑋, 𝑌})
18 rnfdmpr 44831 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
1917, 18syl5com 31 . . . . . . . 8 (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2019adantr 482 . . . . . . 7 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2120adantr 482 . . . . . 6 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2221impcom 409 . . . . 5 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)})
2322eqcomd 2742 . . . 4 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → {(𝐹𝑋), (𝐹𝑌)} = ran 𝐹)
2423imaeq2d 5979 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = (𝐸 “ ran 𝐹))
25 preq12 4675 . . . 4 (((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵) → {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))} = {𝐴, 𝐵})
2625ad2antll 727 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))} = {𝐴, 𝐵})
2716, 24, 263eqtr3d 2784 . 2 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})
2827ex 414 1 ((𝑋𝑉𝑌𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  {cpr 4567  dom cdm 5600  ran crn 5601  cima 5603   Fn wfn 6453  wf 6454  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator