Proof of Theorem imarnf1pr
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ffn 6736 | . . . . . . . . 9
⊢ (𝐸:dom 𝐸⟶𝑅 → 𝐸 Fn dom 𝐸) | 
| 2 | 1 | adantl 481 | . . . . . . . 8
⊢ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) → 𝐸 Fn dom 𝐸) | 
| 3 | 2 | adantr 480 | . . . . . . 7
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝐸 Fn dom 𝐸) | 
| 4 |  | simpll 767 | . . . . . . . 8
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝐹:{𝑋, 𝑌}⟶dom 𝐸) | 
| 5 |  | prid1g 4760 | . . . . . . . . . 10
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋, 𝑌}) | 
| 6 | 5 | adantr 480 | . . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → 𝑋 ∈ {𝑋, 𝑌}) | 
| 7 | 6 | adantl 481 | . . . . . . . 8
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝑋 ∈ {𝑋, 𝑌}) | 
| 8 | 4, 7 | ffvelcdmd 7105 | . . . . . . 7
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → (𝐹‘𝑋) ∈ dom 𝐸) | 
| 9 |  | prid2g 4761 | . . . . . . . . 9
⊢ (𝑌 ∈ 𝑊 → 𝑌 ∈ {𝑋, 𝑌}) | 
| 10 | 9 | ad2antll 729 | . . . . . . . 8
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝑌 ∈ {𝑋, 𝑌}) | 
| 11 | 4, 10 | ffvelcdmd 7105 | . . . . . . 7
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → (𝐹‘𝑌) ∈ dom 𝐸) | 
| 12 |  | fnimapr 6992 | . . . . . . 7
⊢ ((𝐸 Fn dom 𝐸 ∧ (𝐹‘𝑋) ∈ dom 𝐸 ∧ (𝐹‘𝑌) ∈ dom 𝐸) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))}) | 
| 13 | 3, 8, 11, 12 | syl3anc 1373 | . . . . . 6
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))}) | 
| 14 | 13 | ex 412 | . . . . 5
⊢ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))})) | 
| 15 | 14 | adantr 480 | . . . 4
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))})) | 
| 16 | 15 | impcom 407 | . . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))}) | 
| 17 |  | ffn 6736 | . . . . . . . . 9
⊢ (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → 𝐹 Fn {𝑋, 𝑌}) | 
| 18 |  | rnfdmpr 47293 | . . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) | 
| 19 | 17, 18 | syl5com 31 | . . . . . . . 8
⊢ (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) | 
| 20 | 19 | adantr 480 | . . . . . . 7
⊢ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) | 
| 21 | 20 | adantr 480 | . . . . . 6
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) | 
| 22 | 21 | impcom 407 | . . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)}) | 
| 23 | 22 | eqcomd 2743 | . . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → {(𝐹‘𝑋), (𝐹‘𝑌)} = ran 𝐹) | 
| 24 | 23 | imaeq2d 6078 | . . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = (𝐸 “ ran 𝐹)) | 
| 25 |  | preq12 4735 | . . . 4
⊢ (((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵) → {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))} = {𝐴, 𝐵}) | 
| 26 | 25 | ad2antll 729 | . . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))} = {𝐴, 𝐵}) | 
| 27 | 16, 24, 26 | 3eqtr3d 2785 | . 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}) | 
| 28 | 27 | ex 412 | 1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})) |