Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imarnf1pr Structured version   Visualization version   GIF version

Theorem imarnf1pr 44725
Description: The image of the range of a function 𝐹 under a function 𝐸 if 𝐹 is a function from a pair into the domain of 𝐸. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
imarnf1pr ((𝑋𝑉𝑌𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}))

Proof of Theorem imarnf1pr
StepHypRef Expression
1 ffn 6596 . . . . . . . . 9 (𝐸:dom 𝐸𝑅𝐸 Fn dom 𝐸)
21adantl 481 . . . . . . . 8 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → 𝐸 Fn dom 𝐸)
32adantr 480 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝐸 Fn dom 𝐸)
4 simpll 763 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝐹:{𝑋, 𝑌}⟶dom 𝐸)
5 prid1g 4701 . . . . . . . . . 10 (𝑋𝑉𝑋 ∈ {𝑋, 𝑌})
65adantr 480 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → 𝑋 ∈ {𝑋, 𝑌})
76adantl 481 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝑋 ∈ {𝑋, 𝑌})
84, 7ffvelrnd 6956 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐹𝑋) ∈ dom 𝐸)
9 prid2g 4702 . . . . . . . . 9 (𝑌𝑊𝑌 ∈ {𝑋, 𝑌})
109ad2antll 725 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝑌 ∈ {𝑋, 𝑌})
114, 10ffvelrnd 6956 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐹𝑌) ∈ dom 𝐸)
12 fnimapr 6846 . . . . . . 7 ((𝐸 Fn dom 𝐸 ∧ (𝐹𝑋) ∈ dom 𝐸 ∧ (𝐹𝑌) ∈ dom 𝐸) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
133, 8, 11, 12syl3anc 1369 . . . . . 6 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
1413ex 412 . . . . 5 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → ((𝑋𝑉𝑌𝑊) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))}))
1514adantr 480 . . . 4 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → ((𝑋𝑉𝑌𝑊) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))}))
1615impcom 407 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
17 ffn 6596 . . . . . . . . 9 (𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐹 Fn {𝑋, 𝑌})
18 rnfdmpr 44724 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
1917, 18syl5com 31 . . . . . . . 8 (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2019adantr 480 . . . . . . 7 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2120adantr 480 . . . . . 6 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2221impcom 407 . . . . 5 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)})
2322eqcomd 2745 . . . 4 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → {(𝐹𝑋), (𝐹𝑌)} = ran 𝐹)
2423imaeq2d 5966 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = (𝐸 “ ran 𝐹))
25 preq12 4676 . . . 4 (((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵) → {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))} = {𝐴, 𝐵})
2625ad2antll 725 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))} = {𝐴, 𝐵})
2716, 24, 263eqtr3d 2787 . 2 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})
2827ex 412 1 ((𝑋𝑉𝑌𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  {cpr 4568  dom cdm 5588  ran crn 5589  cima 5591   Fn wfn 6425  wf 6426  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator