Proof of Theorem imarnf1pr
| Step | Hyp | Ref
| Expression |
| 1 | | ffn 6706 |
. . . . . . . . 9
⊢ (𝐸:dom 𝐸⟶𝑅 → 𝐸 Fn dom 𝐸) |
| 2 | 1 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) → 𝐸 Fn dom 𝐸) |
| 3 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝐸 Fn dom 𝐸) |
| 4 | | simpll 766 |
. . . . . . . 8
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝐹:{𝑋, 𝑌}⟶dom 𝐸) |
| 5 | | prid1g 4736 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋, 𝑌}) |
| 6 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → 𝑋 ∈ {𝑋, 𝑌}) |
| 7 | 6 | adantl 481 |
. . . . . . . 8
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝑋 ∈ {𝑋, 𝑌}) |
| 8 | 4, 7 | ffvelcdmd 7075 |
. . . . . . 7
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → (𝐹‘𝑋) ∈ dom 𝐸) |
| 9 | | prid2g 4737 |
. . . . . . . . 9
⊢ (𝑌 ∈ 𝑊 → 𝑌 ∈ {𝑋, 𝑌}) |
| 10 | 9 | ad2antll 729 |
. . . . . . . 8
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → 𝑌 ∈ {𝑋, 𝑌}) |
| 11 | 4, 10 | ffvelcdmd 7075 |
. . . . . . 7
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → (𝐹‘𝑌) ∈ dom 𝐸) |
| 12 | | fnimapr 6962 |
. . . . . . 7
⊢ ((𝐸 Fn dom 𝐸 ∧ (𝐹‘𝑋) ∈ dom 𝐸 ∧ (𝐹‘𝑌) ∈ dom 𝐸) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))}) |
| 13 | 3, 8, 11, 12 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))}) |
| 14 | 13 | ex 412 |
. . . . 5
⊢ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))})) |
| 15 | 14 | adantr 480 |
. . . 4
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))})) |
| 16 | 15 | impcom 407 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))}) |
| 17 | | ffn 6706 |
. . . . . . . . 9
⊢ (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → 𝐹 Fn {𝑋, 𝑌}) |
| 18 | | rnfdmpr 47310 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) |
| 19 | 17, 18 | syl5com 31 |
. . . . . . . 8
⊢ (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) |
| 20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) |
| 21 | 20 | adantr 480 |
. . . . . 6
⊢ (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) |
| 22 | 21 | impcom 407 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)}) |
| 23 | 22 | eqcomd 2741 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → {(𝐹‘𝑋), (𝐹‘𝑌)} = ran 𝐹) |
| 24 | 23 | imaeq2d 6047 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → (𝐸 “ {(𝐹‘𝑋), (𝐹‘𝑌)}) = (𝐸 “ ran 𝐹)) |
| 25 | | preq12 4711 |
. . . 4
⊢ (((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵) → {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))} = {𝐴, 𝐵}) |
| 26 | 25 | ad2antll 729 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → {(𝐸‘(𝐹‘𝑋)), (𝐸‘(𝐹‘𝑌))} = {𝐴, 𝐵}) |
| 27 | 16, 24, 26 | 3eqtr3d 2778 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵))) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}) |
| 28 | 27 | ex 412 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})) |