Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imarnf1pr Structured version   Visualization version   GIF version

Theorem imarnf1pr 46069
Description: The image of the range of a function 𝐹 under a function 𝐸 if 𝐹 is a function from a pair into the domain of 𝐸. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
imarnf1pr ((𝑋𝑉𝑌𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}))

Proof of Theorem imarnf1pr
StepHypRef Expression
1 ffn 6717 . . . . . . . . 9 (𝐸:dom 𝐸𝑅𝐸 Fn dom 𝐸)
21adantl 482 . . . . . . . 8 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → 𝐸 Fn dom 𝐸)
32adantr 481 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝐸 Fn dom 𝐸)
4 simpll 765 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝐹:{𝑋, 𝑌}⟶dom 𝐸)
5 prid1g 4764 . . . . . . . . . 10 (𝑋𝑉𝑋 ∈ {𝑋, 𝑌})
65adantr 481 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → 𝑋 ∈ {𝑋, 𝑌})
76adantl 482 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝑋 ∈ {𝑋, 𝑌})
84, 7ffvelcdmd 7087 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐹𝑋) ∈ dom 𝐸)
9 prid2g 4765 . . . . . . . . 9 (𝑌𝑊𝑌 ∈ {𝑋, 𝑌})
109ad2antll 727 . . . . . . . 8 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → 𝑌 ∈ {𝑋, 𝑌})
114, 10ffvelcdmd 7087 . . . . . . 7 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐹𝑌) ∈ dom 𝐸)
12 fnimapr 6975 . . . . . . 7 ((𝐸 Fn dom 𝐸 ∧ (𝐹𝑋) ∈ dom 𝐸 ∧ (𝐹𝑌) ∈ dom 𝐸) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
133, 8, 11, 12syl3anc 1371 . . . . . 6 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ (𝑋𝑉𝑌𝑊)) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
1413ex 413 . . . . 5 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → ((𝑋𝑉𝑌𝑊) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))}))
1514adantr 481 . . . 4 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → ((𝑋𝑉𝑌𝑊) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))}))
1615impcom 408 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))})
17 ffn 6717 . . . . . . . . 9 (𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐹 Fn {𝑋, 𝑌})
18 rnfdmpr 46068 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
1917, 18syl5com 31 . . . . . . . 8 (𝐹:{𝑋, 𝑌}⟶dom 𝐸 → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2019adantr 481 . . . . . . 7 ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2120adantr 481 . . . . . 6 (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → ((𝑋𝑉𝑌𝑊) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
2221impcom 408 . . . . 5 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)})
2322eqcomd 2738 . . . 4 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → {(𝐹𝑋), (𝐹𝑌)} = ran 𝐹)
2423imaeq2d 6059 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ {(𝐹𝑋), (𝐹𝑌)}) = (𝐸 “ ran 𝐹))
25 preq12 4739 . . . 4 (((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵) → {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))} = {𝐴, 𝐵})
2625ad2antll 727 . . 3 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → {(𝐸‘(𝐹𝑋)), (𝐸‘(𝐹𝑌))} = {𝐴, 𝐵})
2716, 24, 263eqtr3d 2780 . 2 (((𝑋𝑉𝑌𝑊) ∧ ((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵))) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})
2827ex 413 1 ((𝑋𝑉𝑌𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cpr 4630  dom cdm 5676  ran crn 5677  cima 5679   Fn wfn 6538  wf 6539  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator