MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashle2pr Structured version   Visualization version   GIF version

Theorem hashle2pr 14512
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
hashle2pr ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
Distinct variable group:   𝑃,𝑎,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem hashle2pr
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hashxnn0 14374 . . . . . . 7 (𝑃𝑉 → (♯‘𝑃) ∈ ℕ0*)
2 xnn0le2is012 13284 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0* ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
31, 2sylan 580 . . . . . 6 ((𝑃𝑉 ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
43ex 412 . . . . 5 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)))
5 hasheq0 14398 . . . . . . . . 9 (𝑃𝑉 → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
6 eqneqall 2948 . . . . . . . . 9 (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
75, 6biimtrdi 253 . . . . . . . 8 (𝑃𝑉 → ((♯‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
87com12 32 . . . . . . 7 ((♯‘𝑃) = 0 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
9 hash1snb 14454 . . . . . . . . . . 11 (𝑃𝑉 → ((♯‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐}))
10 vex 3481 . . . . . . . . . . . . 13 𝑐 ∈ V
11 preq12 4739 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐})
12 dfsn2 4643 . . . . . . . . . . . . . . 15 {𝑐} = {𝑐, 𝑐}
1311, 12eqtr4di 2792 . . . . . . . . . . . . . 14 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐})
1413eqeq2d 2745 . . . . . . . . . . . . 13 ((𝑎 = 𝑐𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐}))
1510, 10, 14spc2ev 3606 . . . . . . . . . . . 12 (𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1615exlimiv 1927 . . . . . . . . . . 11 (∃𝑐 𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
179, 16biimtrdi 253 . . . . . . . . . 10 (𝑃𝑉 → ((♯‘𝑃) = 1 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
1817imp 406 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1918a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2019expcom 413 . . . . . . 7 ((♯‘𝑃) = 1 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
21 hash2pr 14504 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
2221a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2322expcom 413 . . . . . . 7 ((♯‘𝑃) = 2 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
248, 20, 233jaoi 1427 . . . . . 6 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2524com12 32 . . . . 5 (𝑃𝑉 → (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
264, 25syld 47 . . . 4 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2726com23 86 . . 3 (𝑃𝑉 → (𝑃 ≠ ∅ → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2827imp 406 . 2 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
29 fveq2 6906 . . . 4 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) = (♯‘{𝑎, 𝑏}))
30 hashprlei 14503 . . . . 5 ({𝑎, 𝑏} ∈ Fin ∧ (♯‘{𝑎, 𝑏}) ≤ 2)
3130simpri 485 . . . 4 (♯‘{𝑎, 𝑏}) ≤ 2
3229, 31eqbrtrdi 5186 . . 3 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3332exlimivv 1929 . 2 (∃𝑎𝑏 𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3428, 33impbid1 225 1 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1536  wex 1775  wcel 2105  wne 2937  c0 4338  {csn 4630  {cpr 4632   class class class wbr 5147  cfv 6562  Fincfn 8983  0cc0 11152  1c1 11153  cle 11293  2c2 12318  0*cxnn0 12596  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366
This theorem is referenced by:  hashle2prv  14513
  Copyright terms: Public domain W3C validator