MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashle2pr Structured version   Visualization version   GIF version

Theorem hashle2pr 14379
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
hashle2pr ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
Distinct variable group:   𝑃,𝑎,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem hashle2pr
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hashxnn0 14241 . . . . . . 7 (𝑃𝑉 → (♯‘𝑃) ∈ ℕ0*)
2 xnn0le2is012 13140 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0* ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
31, 2sylan 580 . . . . . 6 ((𝑃𝑉 ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
43ex 412 . . . . 5 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)))
5 hasheq0 14265 . . . . . . . . 9 (𝑃𝑉 → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
6 eqneqall 2939 . . . . . . . . 9 (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
75, 6biimtrdi 253 . . . . . . . 8 (𝑃𝑉 → ((♯‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
87com12 32 . . . . . . 7 ((♯‘𝑃) = 0 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
9 hash1snb 14321 . . . . . . . . . . 11 (𝑃𝑉 → ((♯‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐}))
10 vex 3440 . . . . . . . . . . . . 13 𝑐 ∈ V
11 preq12 4683 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐})
12 dfsn2 4584 . . . . . . . . . . . . . . 15 {𝑐} = {𝑐, 𝑐}
1311, 12eqtr4di 2784 . . . . . . . . . . . . . 14 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐})
1413eqeq2d 2742 . . . . . . . . . . . . 13 ((𝑎 = 𝑐𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐}))
1510, 10, 14spc2ev 3557 . . . . . . . . . . . 12 (𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1615exlimiv 1931 . . . . . . . . . . 11 (∃𝑐 𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
179, 16biimtrdi 253 . . . . . . . . . 10 (𝑃𝑉 → ((♯‘𝑃) = 1 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
1817imp 406 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1918a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2019expcom 413 . . . . . . 7 ((♯‘𝑃) = 1 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
21 hash2pr 14371 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
2221a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2322expcom 413 . . . . . . 7 ((♯‘𝑃) = 2 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
248, 20, 233jaoi 1430 . . . . . 6 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2524com12 32 . . . . 5 (𝑃𝑉 → (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
264, 25syld 47 . . . 4 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2726com23 86 . . 3 (𝑃𝑉 → (𝑃 ≠ ∅ → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2827imp 406 . 2 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
29 fveq2 6817 . . . 4 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) = (♯‘{𝑎, 𝑏}))
30 hashprlei 14370 . . . . 5 ({𝑎, 𝑏} ∈ Fin ∧ (♯‘{𝑎, 𝑏}) ≤ 2)
3130simpri 485 . . . 4 (♯‘{𝑎, 𝑏}) ≤ 2
3229, 31eqbrtrdi 5125 . . 3 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3332exlimivv 1933 . 2 (∃𝑎𝑏 𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3428, 33impbid1 225 1 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wex 1780  wcel 2111  wne 2928  c0 4278  {csn 4571  {cpr 4573   class class class wbr 5086  cfv 6476  Fincfn 8864  0cc0 11001  1c1 11002  cle 11142  2c2 12175  0*cxnn0 12449  chash 14232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-hash 14233
This theorem is referenced by:  hashle2prv  14380
  Copyright terms: Public domain W3C validator