MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashle2pr Structured version   Visualization version   GIF version

Theorem hashle2pr 14434
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
hashle2pr ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
Distinct variable group:   𝑃,𝑎,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem hashle2pr
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hashxnn0 14295 . . . . . . 7 (𝑃𝑉 → (♯‘𝑃) ∈ ℕ0*)
2 xnn0le2is012 13221 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0* ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
31, 2sylan 579 . . . . . 6 ((𝑃𝑉 ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
43ex 412 . . . . 5 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)))
5 hasheq0 14319 . . . . . . . . 9 (𝑃𝑉 → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
6 eqneqall 2943 . . . . . . . . 9 (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
75, 6syl6bi 253 . . . . . . . 8 (𝑃𝑉 → ((♯‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
87com12 32 . . . . . . 7 ((♯‘𝑃) = 0 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
9 hash1snb 14375 . . . . . . . . . . 11 (𝑃𝑉 → ((♯‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐}))
10 vex 3470 . . . . . . . . . . . . 13 𝑐 ∈ V
11 preq12 4731 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐})
12 dfsn2 4633 . . . . . . . . . . . . . . 15 {𝑐} = {𝑐, 𝑐}
1311, 12eqtr4di 2782 . . . . . . . . . . . . . 14 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐})
1413eqeq2d 2735 . . . . . . . . . . . . 13 ((𝑎 = 𝑐𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐}))
1510, 10, 14spc2ev 3589 . . . . . . . . . . . 12 (𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1615exlimiv 1925 . . . . . . . . . . 11 (∃𝑐 𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
179, 16syl6bi 253 . . . . . . . . . 10 (𝑃𝑉 → ((♯‘𝑃) = 1 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
1817imp 406 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1918a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2019expcom 413 . . . . . . 7 ((♯‘𝑃) = 1 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
21 hash2pr 14426 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
2221a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2322expcom 413 . . . . . . 7 ((♯‘𝑃) = 2 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
248, 20, 233jaoi 1424 . . . . . 6 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2524com12 32 . . . . 5 (𝑃𝑉 → (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
264, 25syld 47 . . . 4 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2726com23 86 . . 3 (𝑃𝑉 → (𝑃 ≠ ∅ → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2827imp 406 . 2 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
29 fveq2 6881 . . . 4 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) = (♯‘{𝑎, 𝑏}))
30 hashprlei 14425 . . . . 5 ({𝑎, 𝑏} ∈ Fin ∧ (♯‘{𝑎, 𝑏}) ≤ 2)
3130simpri 485 . . . 4 (♯‘{𝑎, 𝑏}) ≤ 2
3229, 31eqbrtrdi 5177 . . 3 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3332exlimivv 1927 . 2 (∃𝑎𝑏 𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3428, 33impbid1 224 1 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3o 1083   = wceq 1533  wex 1773  wcel 2098  wne 2932  c0 4314  {csn 4620  {cpr 4622   class class class wbr 5138  cfv 6533  Fincfn 8934  0cc0 11105  1c1 11106  cle 11245  2c2 12263  0*cxnn0 12540  chash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-dju 9891  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287
This theorem is referenced by:  hashle2prv  14435
  Copyright terms: Public domain W3C validator