Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashle2pr Structured version   Visualization version   GIF version

Theorem hashle2pr 13549
 Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
hashle2pr ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
Distinct variable group:   𝑃,𝑎,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem hashle2pr
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hashxnn0 13420 . . . . . . 7 (𝑃𝑉 → (♯‘𝑃) ∈ ℕ0*)
2 xnn0le2is012 12365 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0* ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
31, 2sylan 577 . . . . . 6 ((𝑃𝑉 ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
43ex 403 . . . . 5 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)))
5 hasheq0 13445 . . . . . . . . 9 (𝑃𝑉 → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
6 eqneqall 3011 . . . . . . . . 9 (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
75, 6syl6bi 245 . . . . . . . 8 (𝑃𝑉 → ((♯‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
87com12 32 . . . . . . 7 ((♯‘𝑃) = 0 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
9 hash1snb 13497 . . . . . . . . . . 11 (𝑃𝑉 → ((♯‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐}))
10 vex 3418 . . . . . . . . . . . . 13 𝑐 ∈ V
11 preq12 4489 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐})
12 dfsn2 4411 . . . . . . . . . . . . . . 15 {𝑐} = {𝑐, 𝑐}
1311, 12syl6eqr 2880 . . . . . . . . . . . . . 14 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐})
1413eqeq2d 2836 . . . . . . . . . . . . 13 ((𝑎 = 𝑐𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐}))
1510, 10, 14spc2ev 3519 . . . . . . . . . . . 12 (𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1615exlimiv 2031 . . . . . . . . . . 11 (∃𝑐 𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
179, 16syl6bi 245 . . . . . . . . . 10 (𝑃𝑉 → ((♯‘𝑃) = 1 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
1817imp 397 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1918a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2019expcom 404 . . . . . . 7 ((♯‘𝑃) = 1 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
21 hash2pr 13541 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
2221a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2322expcom 404 . . . . . . 7 ((♯‘𝑃) = 2 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
248, 20, 233jaoi 1558 . . . . . 6 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2524com12 32 . . . . 5 (𝑃𝑉 → (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
264, 25syld 47 . . . 4 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2726com23 86 . . 3 (𝑃𝑉 → (𝑃 ≠ ∅ → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2827imp 397 . 2 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
29 fveq2 6434 . . . 4 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) = (♯‘{𝑎, 𝑏}))
30 hashprlei 13540 . . . . 5 ({𝑎, 𝑏} ∈ Fin ∧ (♯‘{𝑎, 𝑏}) ≤ 2)
3130simpri 481 . . . 4 (♯‘{𝑎, 𝑏}) ≤ 2
3229, 31syl6eqbr 4913 . . 3 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3332exlimivv 2033 . 2 (∃𝑎𝑏 𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3428, 33impbid1 217 1 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∨ w3o 1112   = wceq 1658  ∃wex 1880   ∈ wcel 2166   ≠ wne 3000  ∅c0 4145  {csn 4398  {cpr 4400   class class class wbr 4874  ‘cfv 6124  Fincfn 8223  0cc0 10253  1c1 10254   ≤ cle 10393  2c2 11407  ℕ0*cxnn0 11691  ♯chash 13411 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-card 9079  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-n0 11620  df-xnn0 11692  df-z 11706  df-uz 11970  df-fz 12621  df-hash 13412 This theorem is referenced by:  hashle2prv  13550
 Copyright terms: Public domain W3C validator