| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashle2pr | Structured version Visualization version GIF version | ||
| Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| hashle2pr | ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashxnn0 14265 | . . . . . . 7 ⊢ (𝑃 ∈ 𝑉 → (♯‘𝑃) ∈ ℕ0*) | |
| 2 | xnn0le2is012 13167 | . . . . . . 7 ⊢ (((♯‘𝑃) ∈ ℕ0* ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)) | |
| 3 | 1, 2 | sylan 580 | . . . . . 6 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)) |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) ≤ 2 → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))) |
| 5 | hasheq0 14289 | . . . . . . . . 9 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
| 6 | eqneqall 2936 | . . . . . . . . 9 ⊢ (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) | |
| 7 | 5, 6 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
| 8 | 7 | com12 32 | . . . . . . 7 ⊢ ((♯‘𝑃) = 0 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
| 9 | hash1snb 14345 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐})) | |
| 10 | vex 3442 | . . . . . . . . . . . . 13 ⊢ 𝑐 ∈ V | |
| 11 | preq12 4689 | . . . . . . . . . . . . . . 15 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐}) | |
| 12 | dfsn2 4592 | . . . . . . . . . . . . . . 15 ⊢ {𝑐} = {𝑐, 𝑐} | |
| 13 | 11, 12 | eqtr4di 2782 | . . . . . . . . . . . . . 14 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐}) |
| 14 | 13 | eqeq2d 2740 | . . . . . . . . . . . . 13 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐})) |
| 15 | 10, 10, 14 | spc2ev 3564 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
| 16 | 15 | exlimiv 1930 | . . . . . . . . . . 11 ⊢ (∃𝑐 𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
| 17 | 9, 16 | biimtrdi 253 | . . . . . . . . . 10 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 1 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
| 18 | 17 | imp 406 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 1) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
| 19 | 18 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
| 20 | 19 | expcom 413 | . . . . . . 7 ⊢ ((♯‘𝑃) = 1 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
| 21 | hash2pr 14395 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) | |
| 22 | 21 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
| 23 | 22 | expcom 413 | . . . . . . 7 ⊢ ((♯‘𝑃) = 2 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
| 24 | 8, 20, 23 | 3jaoi 1430 | . . . . . 6 ⊢ (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
| 25 | 24 | com12 32 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
| 26 | 4, 25 | syld 47 | . . . 4 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
| 27 | 26 | com23 86 | . . 3 ⊢ (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ((♯‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
| 28 | 27 | imp 406 | . 2 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
| 29 | fveq2 6826 | . . . 4 ⊢ (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) = (♯‘{𝑎, 𝑏})) | |
| 30 | hashprlei 14394 | . . . . 5 ⊢ ({𝑎, 𝑏} ∈ Fin ∧ (♯‘{𝑎, 𝑏}) ≤ 2) | |
| 31 | 30 | simpri 485 | . . . 4 ⊢ (♯‘{𝑎, 𝑏}) ≤ 2 |
| 32 | 29, 31 | eqbrtrdi 5134 | . . 3 ⊢ (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2) |
| 33 | 32 | exlimivv 1932 | . 2 ⊢ (∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2) |
| 34 | 28, 33 | impbid1 225 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 {csn 4579 {cpr 4581 class class class wbr 5095 ‘cfv 6486 Fincfn 8879 0cc0 11028 1c1 11029 ≤ cle 11169 2c2 12202 ℕ0*cxnn0 12476 ♯chash 14256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-n0 12404 df-xnn0 12477 df-z 12491 df-uz 12755 df-fz 13430 df-hash 14257 |
| This theorem is referenced by: hashle2prv 14404 |
| Copyright terms: Public domain | W3C validator |