![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashle2pr | Structured version Visualization version GIF version |
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
hashle2pr | ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashxnn0 14374 | . . . . . . 7 ⊢ (𝑃 ∈ 𝑉 → (♯‘𝑃) ∈ ℕ0*) | |
2 | xnn0le2is012 13284 | . . . . . . 7 ⊢ (((♯‘𝑃) ∈ ℕ0* ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)) | |
3 | 1, 2 | sylan 580 | . . . . . 6 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)) |
4 | 3 | ex 412 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) ≤ 2 → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))) |
5 | hasheq0 14398 | . . . . . . . . 9 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
6 | eqneqall 2948 | . . . . . . . . 9 ⊢ (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) | |
7 | 5, 6 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
8 | 7 | com12 32 | . . . . . . 7 ⊢ ((♯‘𝑃) = 0 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
9 | hash1snb 14454 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐})) | |
10 | vex 3481 | . . . . . . . . . . . . 13 ⊢ 𝑐 ∈ V | |
11 | preq12 4739 | . . . . . . . . . . . . . . 15 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐}) | |
12 | dfsn2 4643 | . . . . . . . . . . . . . . 15 ⊢ {𝑐} = {𝑐, 𝑐} | |
13 | 11, 12 | eqtr4di 2792 | . . . . . . . . . . . . . 14 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐}) |
14 | 13 | eqeq2d 2745 | . . . . . . . . . . . . 13 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐})) |
15 | 10, 10, 14 | spc2ev 3606 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
16 | 15 | exlimiv 1927 | . . . . . . . . . . 11 ⊢ (∃𝑐 𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
17 | 9, 16 | biimtrdi 253 | . . . . . . . . . 10 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 1 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
18 | 17 | imp 406 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 1) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
19 | 18 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
20 | 19 | expcom 413 | . . . . . . 7 ⊢ ((♯‘𝑃) = 1 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
21 | hash2pr 14504 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) | |
22 | 21 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
23 | 22 | expcom 413 | . . . . . . 7 ⊢ ((♯‘𝑃) = 2 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
24 | 8, 20, 23 | 3jaoi 1427 | . . . . . 6 ⊢ (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
25 | 24 | com12 32 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
26 | 4, 25 | syld 47 | . . . 4 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
27 | 26 | com23 86 | . . 3 ⊢ (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ((♯‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
28 | 27 | imp 406 | . 2 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
29 | fveq2 6906 | . . . 4 ⊢ (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) = (♯‘{𝑎, 𝑏})) | |
30 | hashprlei 14503 | . . . . 5 ⊢ ({𝑎, 𝑏} ∈ Fin ∧ (♯‘{𝑎, 𝑏}) ≤ 2) | |
31 | 30 | simpri 485 | . . . 4 ⊢ (♯‘{𝑎, 𝑏}) ≤ 2 |
32 | 29, 31 | eqbrtrdi 5186 | . . 3 ⊢ (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2) |
33 | 32 | exlimivv 1929 | . 2 ⊢ (∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2) |
34 | 28, 33 | impbid1 225 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1536 ∃wex 1775 ∈ wcel 2105 ≠ wne 2937 ∅c0 4338 {csn 4630 {cpr 4632 class class class wbr 5147 ‘cfv 6562 Fincfn 8983 0cc0 11152 1c1 11153 ≤ cle 11293 2c2 12318 ℕ0*cxnn0 12596 ♯chash 14365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-n0 12524 df-xnn0 12597 df-z 12611 df-uz 12876 df-fz 13544 df-hash 14366 |
This theorem is referenced by: hashle2prv 14513 |
Copyright terms: Public domain | W3C validator |