![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashle2pr | Structured version Visualization version GIF version |
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
hashle2pr | ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashxnn0 14295 | . . . . . . 7 ⊢ (𝑃 ∈ 𝑉 → (♯‘𝑃) ∈ ℕ0*) | |
2 | xnn0le2is012 13221 | . . . . . . 7 ⊢ (((♯‘𝑃) ∈ ℕ0* ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)) | |
3 | 1, 2 | sylan 579 | . . . . . 6 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)) |
4 | 3 | ex 412 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) ≤ 2 → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))) |
5 | hasheq0 14319 | . . . . . . . . 9 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
6 | eqneqall 2943 | . . . . . . . . 9 ⊢ (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) | |
7 | 5, 6 | syl6bi 253 | . . . . . . . 8 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
8 | 7 | com12 32 | . . . . . . 7 ⊢ ((♯‘𝑃) = 0 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
9 | hash1snb 14375 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐})) | |
10 | vex 3470 | . . . . . . . . . . . . 13 ⊢ 𝑐 ∈ V | |
11 | preq12 4731 | . . . . . . . . . . . . . . 15 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐}) | |
12 | dfsn2 4633 | . . . . . . . . . . . . . . 15 ⊢ {𝑐} = {𝑐, 𝑐} | |
13 | 11, 12 | eqtr4di 2782 | . . . . . . . . . . . . . 14 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐}) |
14 | 13 | eqeq2d 2735 | . . . . . . . . . . . . 13 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐})) |
15 | 10, 10, 14 | spc2ev 3589 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
16 | 15 | exlimiv 1925 | . . . . . . . . . . 11 ⊢ (∃𝑐 𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
17 | 9, 16 | syl6bi 253 | . . . . . . . . . 10 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 1 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
18 | 17 | imp 406 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 1) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
19 | 18 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
20 | 19 | expcom 413 | . . . . . . 7 ⊢ ((♯‘𝑃) = 1 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
21 | hash2pr 14426 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) | |
22 | 21 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
23 | 22 | expcom 413 | . . . . . . 7 ⊢ ((♯‘𝑃) = 2 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
24 | 8, 20, 23 | 3jaoi 1424 | . . . . . 6 ⊢ (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
25 | 24 | com12 32 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
26 | 4, 25 | syld 47 | . . . 4 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
27 | 26 | com23 86 | . . 3 ⊢ (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ((♯‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
28 | 27 | imp 406 | . 2 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
29 | fveq2 6881 | . . . 4 ⊢ (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) = (♯‘{𝑎, 𝑏})) | |
30 | hashprlei 14425 | . . . . 5 ⊢ ({𝑎, 𝑏} ∈ Fin ∧ (♯‘{𝑎, 𝑏}) ≤ 2) | |
31 | 30 | simpri 485 | . . . 4 ⊢ (♯‘{𝑎, 𝑏}) ≤ 2 |
32 | 29, 31 | eqbrtrdi 5177 | . . 3 ⊢ (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2) |
33 | 32 | exlimivv 1927 | . 2 ⊢ (∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2) |
34 | 28, 33 | impbid1 224 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ w3o 1083 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∅c0 4314 {csn 4620 {cpr 4622 class class class wbr 5138 ‘cfv 6533 Fincfn 8934 0cc0 11105 1c1 11106 ≤ cle 11245 2c2 12263 ℕ0*cxnn0 12540 ♯chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-dju 9891 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 |
This theorem is referenced by: hashle2prv 14435 |
Copyright terms: Public domain | W3C validator |