![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashle2pr | Structured version Visualization version GIF version |
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
hashle2pr | ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashxnn0 13420 | . . . . . . 7 ⊢ (𝑃 ∈ 𝑉 → (♯‘𝑃) ∈ ℕ0*) | |
2 | xnn0le2is012 12365 | . . . . . . 7 ⊢ (((♯‘𝑃) ∈ ℕ0* ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)) | |
3 | 1, 2 | sylan 577 | . . . . . 6 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)) |
4 | 3 | ex 403 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) ≤ 2 → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))) |
5 | hasheq0 13445 | . . . . . . . . 9 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
6 | eqneqall 3011 | . . . . . . . . 9 ⊢ (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) | |
7 | 5, 6 | syl6bi 245 | . . . . . . . 8 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
8 | 7 | com12 32 | . . . . . . 7 ⊢ ((♯‘𝑃) = 0 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
9 | hash1snb 13497 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐})) | |
10 | vex 3418 | . . . . . . . . . . . . 13 ⊢ 𝑐 ∈ V | |
11 | preq12 4489 | . . . . . . . . . . . . . . 15 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐}) | |
12 | dfsn2 4411 | . . . . . . . . . . . . . . 15 ⊢ {𝑐} = {𝑐, 𝑐} | |
13 | 11, 12 | syl6eqr 2880 | . . . . . . . . . . . . . 14 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐}) |
14 | 13 | eqeq2d 2836 | . . . . . . . . . . . . 13 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐})) |
15 | 10, 10, 14 | spc2ev 3519 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
16 | 15 | exlimiv 2031 | . . . . . . . . . . 11 ⊢ (∃𝑐 𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
17 | 9, 16 | syl6bi 245 | . . . . . . . . . 10 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 1 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
18 | 17 | imp 397 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 1) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
19 | 18 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
20 | 19 | expcom 404 | . . . . . . 7 ⊢ ((♯‘𝑃) = 1 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
21 | hash2pr 13541 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) | |
22 | 21 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
23 | 22 | expcom 404 | . . . . . . 7 ⊢ ((♯‘𝑃) = 2 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
24 | 8, 20, 23 | 3jaoi 1558 | . . . . . 6 ⊢ (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
25 | 24 | com12 32 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
26 | 4, 25 | syld 47 | . . . 4 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
27 | 26 | com23 86 | . . 3 ⊢ (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ((♯‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
28 | 27 | imp 397 | . 2 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
29 | fveq2 6434 | . . . 4 ⊢ (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) = (♯‘{𝑎, 𝑏})) | |
30 | hashprlei 13540 | . . . . 5 ⊢ ({𝑎, 𝑏} ∈ Fin ∧ (♯‘{𝑎, 𝑏}) ≤ 2) | |
31 | 30 | simpri 481 | . . . 4 ⊢ (♯‘{𝑎, 𝑏}) ≤ 2 |
32 | 29, 31 | syl6eqbr 4913 | . . 3 ⊢ (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2) |
33 | 32 | exlimivv 2033 | . 2 ⊢ (∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2) |
34 | 28, 33 | impbid1 217 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∨ w3o 1112 = wceq 1658 ∃wex 1880 ∈ wcel 2166 ≠ wne 3000 ∅c0 4145 {csn 4398 {cpr 4400 class class class wbr 4874 ‘cfv 6124 Fincfn 8223 0cc0 10253 1c1 10254 ≤ cle 10393 2c2 11407 ℕ0*cxnn0 11691 ♯chash 13411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-2o 7828 df-oadd 7831 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-cda 9306 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-n0 11620 df-xnn0 11692 df-z 11706 df-uz 11970 df-fz 12621 df-hash 13412 |
This theorem is referenced by: hashle2prv 13550 |
Copyright terms: Public domain | W3C validator |