MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashle2pr Structured version   Visualization version   GIF version

Theorem hashle2pr 14516
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
hashle2pr ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
Distinct variable group:   𝑃,𝑎,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem hashle2pr
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hashxnn0 14378 . . . . . . 7 (𝑃𝑉 → (♯‘𝑃) ∈ ℕ0*)
2 xnn0le2is012 13288 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0* ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
31, 2sylan 580 . . . . . 6 ((𝑃𝑉 ∧ (♯‘𝑃) ≤ 2) → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2))
43ex 412 . . . . 5 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2)))
5 hasheq0 14402 . . . . . . . . 9 (𝑃𝑉 → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
6 eqneqall 2951 . . . . . . . . 9 (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
75, 6biimtrdi 253 . . . . . . . 8 (𝑃𝑉 → ((♯‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
87com12 32 . . . . . . 7 ((♯‘𝑃) = 0 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
9 hash1snb 14458 . . . . . . . . . . 11 (𝑃𝑉 → ((♯‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐}))
10 vex 3484 . . . . . . . . . . . . 13 𝑐 ∈ V
11 preq12 4735 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐})
12 dfsn2 4639 . . . . . . . . . . . . . . 15 {𝑐} = {𝑐, 𝑐}
1311, 12eqtr4di 2795 . . . . . . . . . . . . . 14 ((𝑎 = 𝑐𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐})
1413eqeq2d 2748 . . . . . . . . . . . . 13 ((𝑎 = 𝑐𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐}))
1510, 10, 14spc2ev 3607 . . . . . . . . . . . 12 (𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1615exlimiv 1930 . . . . . . . . . . 11 (∃𝑐 𝑃 = {𝑐} → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
179, 16biimtrdi 253 . . . . . . . . . 10 (𝑃𝑉 → ((♯‘𝑃) = 1 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
1817imp 406 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
1918a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2019expcom 413 . . . . . . 7 ((♯‘𝑃) = 1 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
21 hash2pr 14508 . . . . . . . . 9 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})
2221a1d 25 . . . . . . . 8 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
2322expcom 413 . . . . . . 7 ((♯‘𝑃) = 2 → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
248, 20, 233jaoi 1430 . . . . . 6 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃𝑉 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2524com12 32 . . . . 5 (𝑃𝑉 → (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ (♯‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
264, 25syld 47 . . . 4 (𝑃𝑉 → ((♯‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2726com23 86 . . 3 (𝑃𝑉 → (𝑃 ≠ ∅ → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏})))
2827imp 406 . 2 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 → ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
29 fveq2 6906 . . . 4 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) = (♯‘{𝑎, 𝑏}))
30 hashprlei 14507 . . . . 5 ({𝑎, 𝑏} ∈ Fin ∧ (♯‘{𝑎, 𝑏}) ≤ 2)
3130simpri 485 . . . 4 (♯‘{𝑎, 𝑏}) ≤ 2
3229, 31eqbrtrdi 5182 . . 3 (𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3332exlimivv 1932 . 2 (∃𝑎𝑏 𝑃 = {𝑎, 𝑏} → (♯‘𝑃) ≤ 2)
3428, 33impbid1 225 1 ((𝑃𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1540  wex 1779  wcel 2108  wne 2940  c0 4333  {csn 4626  {cpr 4628   class class class wbr 5143  cfv 6561  Fincfn 8985  0cc0 11155  1c1 11156  cle 11296  2c2 12321  0*cxnn0 12599  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  hashle2prv  14517
  Copyright terms: Public domain W3C validator