![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > qlax2i | Structured version Visualization version GIF version |
Description: One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlax.1 | ⊢ 𝐴 ∈ Cℋ |
qlax.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
qlax2i | ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlax.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | qlax.2 | . 2 ⊢ 𝐵 ∈ Cℋ | |
3 | 1, 2 | chjcomi 29026 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 (class class class)co 6976 Cℋ cch 28485 ∨ℋ chj 28489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 ax-hilex 28555 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-sh 28763 df-ch 28777 df-chj 28868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |