HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlax2i Structured version   Visualization version   GIF version

Theorem qlax2i 31660
Description: One of the equations showing C is an ortholattice. (This corresponds to axiom "ax-2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlax.1 𝐴C
qlax.2 𝐵C
Assertion
Ref Expression
qlax2i (𝐴 𝐵) = (𝐵 𝐴)

Proof of Theorem qlax2i
StepHypRef Expression
1 qlax.1 . 2 𝐴C
2 qlax.2 . 2 𝐵C
31, 2chjcomi 31500 1 (𝐴 𝐵) = (𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  (class class class)co 7448   C cch 30961   chj 30965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-sh 31239  df-ch 31253  df-chj 31342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator