Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > qlax2i | Structured version Visualization version GIF version |
Description: One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlax.1 | ⊢ 𝐴 ∈ Cℋ |
qlax.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
qlax2i | ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlax.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | qlax.2 | . 2 ⊢ 𝐵 ∈ Cℋ | |
3 | 1, 2 | chjcomi 29706 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 (class class class)co 7252 Cℋ cch 29167 ∨ℋ chj 29171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-hilex 29237 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-sh 29445 df-ch 29459 df-chj 29548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |