HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjcomi Structured version   Visualization version   GIF version

Theorem chjcomi 31449
Description: Commutative law for join in C. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion
Ref Expression
chjcomi (𝐴 𝐵) = (𝐵 𝐴)

Proof of Theorem chjcomi
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chshii 31208 . 2 𝐴S
3 chjcl.2 . . 3 𝐵C
43chshii 31208 . 2 𝐵S
52, 4shjcomi 31352 1 (𝐴 𝐵) = (𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  (class class class)co 7405   C cch 30910   chj 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-hilex 30980
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-sh 31188  df-ch 31202  df-chj 31291
This theorem is referenced by:  chub2i  31451  chnlei  31466  chj12i  31503  lejdiri  31520  cmcm2i  31574  cmbr3i  31581  qlax2i  31609  osumcor2i  31625  3oalem5  31647  pjcji  31665  mayetes3i  31710  mdslj2i  32301  mdsl1i  32302  cvmdi  32305  mdslmd2i  32311  mdexchi  32316  cvexchi  32350  atabsi  32382  mdsymlem1  32384  mdsymlem6  32389  mdsymlem8  32391  sumdmdlem2  32400  dmdbr5ati  32403
  Copyright terms: Public domain W3C validator