HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjcomi Structured version   Visualization version   GIF version

Theorem chjcomi 31469
Description: Commutative law for join in C. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion
Ref Expression
chjcomi (𝐴 𝐵) = (𝐵 𝐴)

Proof of Theorem chjcomi
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chshii 31228 . 2 𝐴S
3 chjcl.2 . . 3 𝐵C
43chshii 31228 . 2 𝐵S
52, 4shjcomi 31372 1 (𝐴 𝐵) = (𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  (class class class)co 7355   C cch 30930   chj 30934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-hilex 31000
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-sh 31208  df-ch 31222  df-chj 31311
This theorem is referenced by:  chub2i  31471  chnlei  31486  chj12i  31523  lejdiri  31540  cmcm2i  31594  cmbr3i  31601  qlax2i  31629  osumcor2i  31645  3oalem5  31667  pjcji  31685  mayetes3i  31730  mdslj2i  32321  mdsl1i  32322  cvmdi  32325  mdslmd2i  32331  mdexchi  32336  cvexchi  32370  atabsi  32402  mdsymlem1  32404  mdsymlem6  32409  mdsymlem8  32411  sumdmdlem2  32420  dmdbr5ati  32423
  Copyright terms: Public domain W3C validator