| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chjcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for join in Cℋ. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chjcomi | ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | chshii 31163 | . 2 ⊢ 𝐴 ∈ Sℋ |
| 3 | chjcl.2 | . . 3 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | chshii 31163 | . 2 ⊢ 𝐵 ∈ Sℋ |
| 5 | 2, 4 | shjcomi 31307 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 Cℋ cch 30865 ∨ℋ chj 30869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-sh 31143 df-ch 31157 df-chj 31246 |
| This theorem is referenced by: chub2i 31406 chnlei 31421 chj12i 31458 lejdiri 31475 cmcm2i 31529 cmbr3i 31536 qlax2i 31564 osumcor2i 31580 3oalem5 31602 pjcji 31620 mayetes3i 31665 mdslj2i 32256 mdsl1i 32257 cvmdi 32260 mdslmd2i 32266 mdexchi 32271 cvexchi 32305 atabsi 32337 mdsymlem1 32339 mdsymlem6 32344 mdsymlem8 32346 sumdmdlem2 32355 dmdbr5ati 32358 |
| Copyright terms: Public domain | W3C validator |