Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chjcomi | Structured version Visualization version GIF version |
Description: Commutative law for join in Cℋ. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
chjcomi | ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | chshii 29589 | . 2 ⊢ 𝐴 ∈ Sℋ |
3 | chjcl.2 | . . 3 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | chshii 29589 | . 2 ⊢ 𝐵 ∈ Sℋ |
5 | 2, 4 | shjcomi 29733 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 Cℋ cch 29291 ∨ℋ chj 29295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-sh 29569 df-ch 29583 df-chj 29672 |
This theorem is referenced by: chub2i 29832 chnlei 29847 chj12i 29884 lejdiri 29901 cmcm2i 29955 cmbr3i 29962 qlax2i 29990 osumcor2i 30006 3oalem5 30028 pjcji 30046 mayetes3i 30091 mdslj2i 30682 mdsl1i 30683 cvmdi 30686 mdslmd2i 30692 mdexchi 30697 cvexchi 30731 atabsi 30763 mdsymlem1 30765 mdsymlem6 30770 mdsymlem8 30772 sumdmdlem2 30781 dmdbr5ati 30784 |
Copyright terms: Public domain | W3C validator |