| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chjcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for join in Cℋ. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chjcomi | ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | chshii 31228 | . 2 ⊢ 𝐴 ∈ Sℋ |
| 3 | chjcl.2 | . . 3 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | chshii 31228 | . 2 ⊢ 𝐵 ∈ Sℋ |
| 5 | 2, 4 | shjcomi 31372 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7355 Cℋ cch 30930 ∨ℋ chj 30934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-hilex 31000 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-sh 31208 df-ch 31222 df-chj 31311 |
| This theorem is referenced by: chub2i 31471 chnlei 31486 chj12i 31523 lejdiri 31540 cmcm2i 31594 cmbr3i 31601 qlax2i 31629 osumcor2i 31645 3oalem5 31667 pjcji 31685 mayetes3i 31730 mdslj2i 32321 mdsl1i 32322 cvmdi 32325 mdslmd2i 32331 mdexchi 32336 cvexchi 32370 atabsi 32402 mdsymlem1 32404 mdsymlem6 32409 mdsymlem8 32411 sumdmdlem2 32420 dmdbr5ati 32423 |
| Copyright terms: Public domain | W3C validator |