| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chjcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for join in Cℋ. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chjcomi | ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | chshii 31199 | . 2 ⊢ 𝐴 ∈ Sℋ |
| 3 | chjcl.2 | . . 3 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | chshii 31199 | . 2 ⊢ 𝐵 ∈ Sℋ |
| 5 | 2, 4 | shjcomi 31343 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 Cℋ cch 30901 ∨ℋ chj 30905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-hilex 30971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-sh 31179 df-ch 31193 df-chj 31282 |
| This theorem is referenced by: chub2i 31442 chnlei 31457 chj12i 31494 lejdiri 31511 cmcm2i 31565 cmbr3i 31572 qlax2i 31600 osumcor2i 31616 3oalem5 31638 pjcji 31656 mayetes3i 31701 mdslj2i 32292 mdsl1i 32293 cvmdi 32296 mdslmd2i 32302 mdexchi 32307 cvexchi 32341 atabsi 32373 mdsymlem1 32375 mdsymlem6 32380 mdsymlem8 32382 sumdmdlem2 32391 dmdbr5ati 32394 |
| Copyright terms: Public domain | W3C validator |