![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > qlax1i | Structured version Visualization version GIF version |
Description: One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlax1.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
qlax1i | ⊢ 𝐴 = (⊥‘(⊥‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlax1.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | ococi 31416 | . 2 ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 |
3 | 2 | eqcomi 2742 | 1 ⊢ 𝐴 = (⊥‘(⊥‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1535 ∈ wcel 2104 ‘cfv 6559 Cℋ cch 30940 ⊥cort 30941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7748 ax-inf2 9673 ax-cc 10467 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 ax-addf 11226 ax-mulf 11227 ax-hilex 31010 ax-hfvadd 31011 ax-hvcom 31012 ax-hvass 31013 ax-hv0cl 31014 ax-hvaddid 31015 ax-hfvmul 31016 ax-hvmulid 31017 ax-hvmulass 31018 ax-hvdistr1 31019 ax-hvdistr2 31020 ax-hvmul0 31021 ax-hfi 31090 ax-his1 31093 ax-his2 31094 ax-his3 31095 ax-his4 31096 ax-hcompl 31213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6318 df-ord 6384 df-on 6385 df-lim 6386 df-suc 6387 df-iota 6511 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-isom 6568 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7882 df-1st 8008 df-2nd 8009 df-frecs 8300 df-wrecs 8331 df-recs 8405 df-rdg 8444 df-1o 8500 df-2o 8501 df-oadd 8504 df-omul 8505 df-er 8739 df-map 8862 df-pm 8863 df-en 8980 df-dom 8981 df-sdom 8982 df-fin 8983 df-fi 9443 df-sup 9474 df-inf 9475 df-oi 9542 df-card 9971 df-acn 9974 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11486 df-neg 11487 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-n0 12519 df-z 12606 df-uz 12871 df-q 12983 df-rp 13027 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ico 13384 df-icc 13385 df-fz 13539 df-fl 13819 df-seq 14030 df-exp 14090 df-cj 15125 df-re 15126 df-im 15127 df-sqrt 15261 df-abs 15262 df-clim 15511 df-rlim 15512 df-rest 17459 df-topgen 17480 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-top 22898 df-topon 22915 df-bases 22951 df-cld 23025 df-ntr 23026 df-cls 23027 df-nei 23104 df-lm 23235 df-haus 23321 df-fil 23852 df-fm 23944 df-flim 23945 df-flf 23946 df-cfil 25285 df-cau 25286 df-cmet 25287 df-grpo 30504 df-gid 30505 df-ginv 30506 df-gdiv 30507 df-ablo 30556 df-vc 30570 df-nv 30603 df-va 30606 df-ba 30607 df-sm 30608 df-0v 30609 df-vs 30610 df-nmcv 30611 df-ims 30612 df-ssp 30733 df-ph 30824 df-cbn 30874 df-hnorm 30979 df-hba 30980 df-hvsub 30982 df-hlim 30983 df-hcau 30984 df-sh 31218 df-ch 31232 df-oc 31263 df-ch0 31264 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |