![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpunirn | Structured version Visualization version GIF version |
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016.) |
Ref | Expression |
---|---|
abfmpunirn.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
abfmpunirn.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
abfmpunirn.3 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
abfmpunirn | ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐵 ∈ ∪ ran 𝐹 → 𝐵 ∈ V) | |
2 | abfmpunirn.2 | . . . . . 6 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
3 | abfmpunirn.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
4 | 2, 3 | fnmpti 6693 | . . . . 5 ⊢ 𝐹 Fn 𝑉 |
5 | fnunirn 7256 | . . . . 5 ⊢ (𝐹 Fn 𝑉 → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥)) |
7 | 3 | fvmpt2 7009 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑉 ∧ {𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
8 | 2, 7 | mpan2 688 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
9 | 8 | eleq2d 2818 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝑥) ↔ 𝐵 ∈ {𝑦 ∣ 𝜑})) |
10 | 9 | rexbiia 3091 | . . . 4 ⊢ (∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
11 | 6, 10 | bitri 275 | . . 3 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
12 | abfmpunirn.3 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
13 | 12 | elabg 3666 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓)) |
14 | 13 | rexbidv 3177 | . . 3 ⊢ (𝐵 ∈ V → (∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
15 | 11, 14 | bitrid 283 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
16 | 1, 15 | biadanii 819 | 1 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 ∃wrex 3069 Vcvv 3473 ∪ cuni 4908 ↦ cmpt 5231 ran crn 5677 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: rabfmpunirn 32146 isrnsiga 33410 isrnmeas 33497 |
Copyright terms: Public domain | W3C validator |