![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpunirn | Structured version Visualization version GIF version |
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016.) |
Ref | Expression |
---|---|
abfmpunirn.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
abfmpunirn.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
abfmpunirn.3 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
abfmpunirn | ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝐵 ∈ ∪ ran 𝐹 → 𝐵 ∈ V) | |
2 | abfmpunirn.2 | . . . . . 6 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
3 | abfmpunirn.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
4 | 2, 3 | fnmpti 6712 | . . . . 5 ⊢ 𝐹 Fn 𝑉 |
5 | fnunirn 7274 | . . . . 5 ⊢ (𝐹 Fn 𝑉 → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥)) |
7 | 3 | fvmpt2 7027 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑉 ∧ {𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
8 | 2, 7 | mpan2 691 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
9 | 8 | eleq2d 2825 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝑥) ↔ 𝐵 ∈ {𝑦 ∣ 𝜑})) |
10 | 9 | rexbiia 3090 | . . . 4 ⊢ (∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
11 | 6, 10 | bitri 275 | . . 3 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
12 | abfmpunirn.3 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
13 | 12 | elabg 3677 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓)) |
14 | 13 | rexbidv 3177 | . . 3 ⊢ (𝐵 ∈ V → (∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
15 | 11, 14 | bitrid 283 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
16 | 1, 15 | biadanii 822 | 1 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 ∪ cuni 4912 ↦ cmpt 5231 ran crn 5690 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: rabfmpunirn 32670 isrnsiga 34094 isrnmeas 34181 |
Copyright terms: Public domain | W3C validator |