Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpunirn Structured version   Visualization version   GIF version

Theorem abfmpunirn 30891
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016.)
Hypotheses
Ref Expression
abfmpunirn.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
abfmpunirn.2 {𝑦𝜑} ∈ V
abfmpunirn.3 (𝑦 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
abfmpunirn (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)

Proof of Theorem abfmpunirn
StepHypRef Expression
1 elex 3440 . 2 (𝐵 ran 𝐹𝐵 ∈ V)
2 abfmpunirn.2 . . . . . 6 {𝑦𝜑} ∈ V
3 abfmpunirn.1 . . . . . 6 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
42, 3fnmpti 6560 . . . . 5 𝐹 Fn 𝑉
5 fnunirn 7108 . . . . 5 (𝐹 Fn 𝑉 → (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ (𝐹𝑥)))
64, 5ax-mp 5 . . . 4 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ (𝐹𝑥))
73fvmpt2 6868 . . . . . . 7 ((𝑥𝑉 ∧ {𝑦𝜑} ∈ V) → (𝐹𝑥) = {𝑦𝜑})
82, 7mpan2 687 . . . . . 6 (𝑥𝑉 → (𝐹𝑥) = {𝑦𝜑})
98eleq2d 2824 . . . . 5 (𝑥𝑉 → (𝐵 ∈ (𝐹𝑥) ↔ 𝐵 ∈ {𝑦𝜑}))
109rexbiia 3176 . . . 4 (∃𝑥𝑉 𝐵 ∈ (𝐹𝑥) ↔ ∃𝑥𝑉 𝐵 ∈ {𝑦𝜑})
116, 10bitri 274 . . 3 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ {𝑦𝜑})
12 abfmpunirn.3 . . . . 5 (𝑦 = 𝐵 → (𝜑𝜓))
1312elabg 3600 . . . 4 (𝐵 ∈ V → (𝐵 ∈ {𝑦𝜑} ↔ 𝜓))
1413rexbidv 3225 . . 3 (𝐵 ∈ V → (∃𝑥𝑉 𝐵 ∈ {𝑦𝜑} ↔ ∃𝑥𝑉 𝜓))
1511, 14syl5bb 282 . 2 (𝐵 ∈ V → (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝜓))
161, 15biadanii 818 1 (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422   cuni 4836  cmpt 5153  ran crn 5581   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  rabfmpunirn  30892  isrnsiga  31981  isrnmeas  32068
  Copyright terms: Public domain W3C validator