![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpunirn | Structured version Visualization version GIF version |
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016.) |
Ref | Expression |
---|---|
abfmpunirn.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
abfmpunirn.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
abfmpunirn.3 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
abfmpunirn | ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐵 ∈ ∪ ran 𝐹 → 𝐵 ∈ V) | |
2 | abfmpunirn.2 | . . . . . 6 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
3 | abfmpunirn.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
4 | 2, 3 | fnmpti 6723 | . . . . 5 ⊢ 𝐹 Fn 𝑉 |
5 | fnunirn 7291 | . . . . 5 ⊢ (𝐹 Fn 𝑉 → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥)) |
7 | 3 | fvmpt2 7040 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑉 ∧ {𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
8 | 2, 7 | mpan2 690 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
9 | 8 | eleq2d 2830 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝑥) ↔ 𝐵 ∈ {𝑦 ∣ 𝜑})) |
10 | 9 | rexbiia 3098 | . . . 4 ⊢ (∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
11 | 6, 10 | bitri 275 | . . 3 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
12 | abfmpunirn.3 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
13 | 12 | elabg 3690 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓)) |
14 | 13 | rexbidv 3185 | . . 3 ⊢ (𝐵 ∈ V → (∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
15 | 11, 14 | bitrid 283 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
16 | 1, 15 | biadanii 821 | 1 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 ∪ cuni 4931 ↦ cmpt 5249 ran crn 5701 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: rabfmpunirn 32671 isrnsiga 34077 isrnmeas 34164 |
Copyright terms: Public domain | W3C validator |