Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpunirn Structured version   Visualization version   GIF version

Theorem abfmpunirn 32583
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016.)
Hypotheses
Ref Expression
abfmpunirn.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
abfmpunirn.2 {𝑦𝜑} ∈ V
abfmpunirn.3 (𝑦 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
abfmpunirn (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)

Proof of Theorem abfmpunirn
StepHypRef Expression
1 elex 3471 . 2 (𝐵 ran 𝐹𝐵 ∈ V)
2 abfmpunirn.2 . . . . . 6 {𝑦𝜑} ∈ V
3 abfmpunirn.1 . . . . . 6 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
42, 3fnmpti 6664 . . . . 5 𝐹 Fn 𝑉
5 fnunirn 7231 . . . . 5 (𝐹 Fn 𝑉 → (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ (𝐹𝑥)))
64, 5ax-mp 5 . . . 4 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ (𝐹𝑥))
73fvmpt2 6982 . . . . . . 7 ((𝑥𝑉 ∧ {𝑦𝜑} ∈ V) → (𝐹𝑥) = {𝑦𝜑})
82, 7mpan2 691 . . . . . 6 (𝑥𝑉 → (𝐹𝑥) = {𝑦𝜑})
98eleq2d 2815 . . . . 5 (𝑥𝑉 → (𝐵 ∈ (𝐹𝑥) ↔ 𝐵 ∈ {𝑦𝜑}))
109rexbiia 3075 . . . 4 (∃𝑥𝑉 𝐵 ∈ (𝐹𝑥) ↔ ∃𝑥𝑉 𝐵 ∈ {𝑦𝜑})
116, 10bitri 275 . . 3 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ {𝑦𝜑})
12 abfmpunirn.3 . . . . 5 (𝑦 = 𝐵 → (𝜑𝜓))
1312elabg 3646 . . . 4 (𝐵 ∈ V → (𝐵 ∈ {𝑦𝜑} ↔ 𝜓))
1413rexbidv 3158 . . 3 (𝐵 ∈ V → (∃𝑥𝑉 𝐵 ∈ {𝑦𝜑} ↔ ∃𝑥𝑉 𝜓))
1511, 14bitrid 283 . 2 (𝐵 ∈ V → (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝜓))
161, 15biadanii 821 1 (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450   cuni 4874  cmpt 5191  ran crn 5642   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  rabfmpunirn  32584  isrnsiga  34110  isrnmeas  34197
  Copyright terms: Public domain W3C validator