| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpunirn | Structured version Visualization version GIF version | ||
| Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016.) |
| Ref | Expression |
|---|---|
| abfmpunirn.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
| abfmpunirn.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| abfmpunirn.3 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| abfmpunirn | ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3455 | . 2 ⊢ (𝐵 ∈ ∪ ran 𝐹 → 𝐵 ∈ V) | |
| 2 | abfmpunirn.2 | . . . . . 6 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 3 | abfmpunirn.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
| 4 | 2, 3 | fnmpti 6620 | . . . . 5 ⊢ 𝐹 Fn 𝑉 |
| 5 | fnunirn 7182 | . . . . 5 ⊢ (𝐹 Fn 𝑉 → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥))) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥)) |
| 7 | 3 | fvmpt2 6935 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑉 ∧ {𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
| 8 | 2, 7 | mpan2 691 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
| 9 | 8 | eleq2d 2815 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝑥) ↔ 𝐵 ∈ {𝑦 ∣ 𝜑})) |
| 10 | 9 | rexbiia 3075 | . . . 4 ⊢ (∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
| 11 | 6, 10 | bitri 275 | . . 3 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
| 12 | abfmpunirn.3 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 13 | 12 | elabg 3630 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓)) |
| 14 | 13 | rexbidv 3154 | . . 3 ⊢ (𝐵 ∈ V → (∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
| 15 | 11, 14 | bitrid 283 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
| 16 | 1, 15 | biadanii 821 | 1 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {cab 2708 ∃wrex 3054 Vcvv 3434 ∪ cuni 4857 ↦ cmpt 5170 ran crn 5615 Fn wfn 6472 ‘cfv 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-fv 6485 |
| This theorem is referenced by: rabfmpunirn 32625 isrnsiga 34116 isrnmeas 34203 |
| Copyright terms: Public domain | W3C validator |