| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpunirn | Structured version Visualization version GIF version | ||
| Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016.) |
| Ref | Expression |
|---|---|
| abfmpunirn.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
| abfmpunirn.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| abfmpunirn.3 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| abfmpunirn | ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐵 ∈ ∪ ran 𝐹 → 𝐵 ∈ V) | |
| 2 | abfmpunirn.2 | . . . . . 6 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 3 | abfmpunirn.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
| 4 | 2, 3 | fnmpti 6661 | . . . . 5 ⊢ 𝐹 Fn 𝑉 |
| 5 | fnunirn 7228 | . . . . 5 ⊢ (𝐹 Fn 𝑉 → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥))) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥)) |
| 7 | 3 | fvmpt2 6979 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑉 ∧ {𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
| 8 | 2, 7 | mpan2 691 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → (𝐹‘𝑥) = {𝑦 ∣ 𝜑}) |
| 9 | 8 | eleq2d 2814 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝑥) ↔ 𝐵 ∈ {𝑦 ∣ 𝜑})) |
| 10 | 9 | rexbiia 3074 | . . . 4 ⊢ (∃𝑥 ∈ 𝑉 𝐵 ∈ (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
| 11 | 6, 10 | bitri 275 | . . 3 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑}) |
| 12 | abfmpunirn.3 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 13 | 12 | elabg 3643 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓)) |
| 14 | 13 | rexbidv 3157 | . . 3 ⊢ (𝐵 ∈ V → (∃𝑥 ∈ 𝑉 𝐵 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
| 15 | 11, 14 | bitrid 283 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 𝜓)) |
| 16 | 1, 15 | biadanii 821 | 1 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 ∪ cuni 4871 ↦ cmpt 5188 ran crn 5639 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: rabfmpunirn 32577 isrnsiga 34103 isrnmeas 34190 |
| Copyright terms: Public domain | W3C validator |