MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnp Structured version   Visualization version   GIF version

Theorem txcnp 23541
Description: If two functions are continuous at 𝐷, then the ordered pair of them is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnp.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
txcnp.5 (𝜑𝐾 ∈ (TopOn‘𝑌))
txcnp.6 (𝜑𝐿 ∈ (TopOn‘𝑍))
txcnp.7 (𝜑𝐷𝑋)
txcnp.8 (𝜑 → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))
txcnp.9 (𝜑 → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))
Assertion
Ref Expression
txcnp (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑌   𝑥,𝑍   𝑥,𝐷   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem txcnp
Dummy variables 𝑠 𝑟 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnp.4 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 txcnp.5 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txcnp.8 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))
4 cnpf2 23171 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) → (𝑥𝑋𝐴):𝑋𝑌)
51, 2, 3, 4syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
65fvmptelcdm 7067 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
7 txcnp.6 . . . . . 6 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 txcnp.9 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))
9 cnpf2 23171 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) → (𝑥𝑋𝐵):𝑋𝑍)
101, 7, 8, 9syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑍)
1110fvmptelcdm 7067 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑍)
126, 11opelxpd 5670 . . 3 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑌 × 𝑍))
1312fmpttd 7069 . 2 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑌 × 𝑍))
14 txcnp.7 . . . . . . . . 9 (𝜑𝐷𝑋)
15 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → 𝑥𝑋)
16 opex 5419 . . . . . . . . . . . 12 𝐴, 𝐵⟩ ∈ V
17 eqid 2729 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1817fvmpt2 6961 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨𝐴, 𝐵⟩)
1915, 16, 18sylancl 586 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨𝐴, 𝐵⟩)
20 eqid 2729 . . . . . . . . . . . . . 14 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
2120fvmpt2 6961 . . . . . . . . . . . . 13 ((𝑥𝑋𝐴𝑌) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
2215, 6, 21syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
23 eqid 2729 . . . . . . . . . . . . . 14 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2423fvmpt2 6961 . . . . . . . . . . . . 13 ((𝑥𝑋𝐵𝑍) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2515, 11, 24syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2622, 25opeq12d 4841 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨𝐴, 𝐵⟩)
2719, 26eqtr4d 2767 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩)
2827ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩)
29 nffvmpt1 6851 . . . . . . . . . . 11 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷)
30 nffvmpt1 6851 . . . . . . . . . . . 12 𝑥((𝑥𝑋𝐴)‘𝐷)
31 nffvmpt1 6851 . . . . . . . . . . . 12 𝑥((𝑥𝑋𝐵)‘𝐷)
3230, 31nfop 4849 . . . . . . . . . . 11 𝑥⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩
3329, 32nfeq 2905 . . . . . . . . . 10 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩
34 fveq2 6840 . . . . . . . . . . 11 (𝑥 = 𝐷 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷))
35 fveq2 6840 . . . . . . . . . . . 12 (𝑥 = 𝐷 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝐷))
36 fveq2 6840 . . . . . . . . . . . 12 (𝑥 = 𝐷 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝐷))
3735, 36opeq12d 4841 . . . . . . . . . . 11 (𝑥 = 𝐷 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩)
3834, 37eqeq12d 2745 . . . . . . . . . 10 (𝑥 = 𝐷 → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩))
3933, 38rspc 3573 . . . . . . . . 9 (𝐷𝑋 → (∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩))
4014, 28, 39sylc 65 . . . . . . . 8 (𝜑 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩)
4140eleq1d 2813 . . . . . . 7 (𝜑 → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) ↔ ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤)))
4241adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) ↔ ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤)))
433ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))
44 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝑣𝐾)
45 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣)
46 cnpimaex 23177 . . . . . . . . . 10 (((𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷) ∧ 𝑣𝐾 ∧ ((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣) → ∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣))
4743, 44, 45, 46syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣))
488ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))
49 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝑤𝐿)
50 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)
51 cnpimaex 23177 . . . . . . . . . 10 (((𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷) ∧ 𝑤𝐿 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤) → ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))
5248, 49, 50, 51syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))
5347, 52jca 511 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → (∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)))
5453ex 412 . . . . . . 7 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → ((((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤) → (∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))))
55 opelxp 5667 . . . . . . 7 (⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤) ↔ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤))
56 reeanv 3207 . . . . . . 7 (∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) ↔ (∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)))
5754, 55, 563imtr4g 296 . . . . . 6 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤) → ∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))))
5842, 57sylbid 240 . . . . 5 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))))
59 an4 656 . . . . . . . . . . 11 (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) ↔ ((𝐷𝑟𝐷𝑠) ∧ (((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)))
60 elin 3927 . . . . . . . . . . . . . 14 (𝐷 ∈ (𝑟𝑠) ↔ (𝐷𝑟𝐷𝑠))
6160biimpri 228 . . . . . . . . . . . . 13 ((𝐷𝑟𝐷𝑠) → 𝐷 ∈ (𝑟𝑠))
6261a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → ((𝐷𝑟𝐷𝑠) → 𝐷 ∈ (𝑟𝑠)))
63 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑟𝐽𝑠𝐽) → 𝑟𝐽)
64 toponss 22848 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑟𝐽) → 𝑟𝑋)
651, 63, 64syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟𝐽𝑠𝐽)) → 𝑟𝑋)
66 ssinss1 4205 . . . . . . . . . . . . . . . . . . . . 21 (𝑟𝑋 → (𝑟𝑠) ⊆ 𝑋)
6766adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑟𝑋) → (𝑟𝑠) ⊆ 𝑋)
6867sselda 3943 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡𝑋)
6928ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩)
70 nffvmpt1 6851 . . . . . . . . . . . . . . . . . . . . 21 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡)
71 nffvmpt1 6851 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝑥𝑋𝐴)‘𝑡)
72 nffvmpt1 6851 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝑥𝑋𝐵)‘𝑡)
7371, 72nfop 4849 . . . . . . . . . . . . . . . . . . . . 21 𝑥⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩
7470, 73nfeq 2905 . . . . . . . . . . . . . . . . . . . 20 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩
75 fveq2 6840 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡))
76 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑡 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝑡))
77 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑡 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝑡))
7876, 77opeq12d 4841 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩)
7975, 78eqeq12d 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑡 → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩))
8074, 79rspc 3573 . . . . . . . . . . . . . . . . . . 19 (𝑡𝑋 → (∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩))
8168, 69, 80sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩)
82 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡 ∈ (𝑟𝑠))
8382elin1d 4163 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡𝑟)
845ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑥𝑋𝐴):𝑋𝑌)
8584ffund 6674 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → Fun (𝑥𝑋𝐴))
8667adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑟𝑠) ⊆ 𝑋)
8784fdmd 6680 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → dom (𝑥𝑋𝐴) = 𝑋)
8886, 87sseqtrrd 3981 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑟𝑠) ⊆ dom (𝑥𝑋𝐴))
8988, 82sseldd 3944 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡 ∈ dom (𝑥𝑋𝐴))
90 funfvima 7186 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (𝑥𝑋𝐴) ∧ 𝑡 ∈ dom (𝑥𝑋𝐴)) → (𝑡𝑟 → ((𝑥𝑋𝐴)‘𝑡) ∈ ((𝑥𝑋𝐴) “ 𝑟)))
9185, 89, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑡𝑟 → ((𝑥𝑋𝐴)‘𝑡) ∈ ((𝑥𝑋𝐴) “ 𝑟)))
9283, 91mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋𝐴)‘𝑡) ∈ ((𝑥𝑋𝐴) “ 𝑟))
9382elin2d 4164 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡𝑠)
9410ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑥𝑋𝐵):𝑋𝑍)
9594ffund 6674 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → Fun (𝑥𝑋𝐵))
9694fdmd 6680 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → dom (𝑥𝑋𝐵) = 𝑋)
9786, 96sseqtrrd 3981 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑟𝑠) ⊆ dom (𝑥𝑋𝐵))
9897, 82sseldd 3944 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡 ∈ dom (𝑥𝑋𝐵))
99 funfvima 7186 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (𝑥𝑋𝐵) ∧ 𝑡 ∈ dom (𝑥𝑋𝐵)) → (𝑡𝑠 → ((𝑥𝑋𝐵)‘𝑡) ∈ ((𝑥𝑋𝐵) “ 𝑠)))
10095, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑡𝑠 → ((𝑥𝑋𝐵)‘𝑡) ∈ ((𝑥𝑋𝐵) “ 𝑠)))
10193, 100mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋𝐵)‘𝑡) ∈ ((𝑥𝑋𝐵) “ 𝑠))
10292, 101opelxpd 5670 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩ ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
10381, 102eqeltrd 2828 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
104103ralrimiva 3125 . . . . . . . . . . . . . . . 16 ((𝜑𝑟𝑋) → ∀𝑡 ∈ (𝑟𝑠)((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
10513ffund 6674 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
106105adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟𝑋) → Fun (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
10713fdmd 6680 . . . . . . . . . . . . . . . . . . 19 (𝜑 → dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = 𝑋)
108107adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟𝑋) → dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = 𝑋)
10967, 108sseqtrrd 3981 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟𝑋) → (𝑟𝑠) ⊆ dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
110 funimass4 6907 . . . . . . . . . . . . . . . . 17 ((Fun (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∧ (𝑟𝑠) ⊆ dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟𝑠)((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠))))
111106, 109, 110syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑟𝑋) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟𝑠)((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠))))
112104, 111mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑋) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
11365, 112syldan 591 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝐽𝑠𝐽)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
114113adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
115 xpss12 5646 . . . . . . . . . . . . 13 ((((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤) → (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤))
116 sstr2 3950 . . . . . . . . . . . . 13 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) → ((((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))
117114, 115, 116syl2im 40 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → ((((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))
11862, 117anim12d 609 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (((𝐷𝑟𝐷𝑠) ∧ (((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))))
11959, 118biimtrid 242 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))))
120 topontop 22834 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1211, 120syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
122 inopn 22820 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑟𝐽𝑠𝐽) → (𝑟𝑠) ∈ 𝐽)
1231223expb 1120 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑟𝐽𝑠𝐽)) → (𝑟𝑠) ∈ 𝐽)
124121, 123sylan 580 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝐽𝑠𝐽)) → (𝑟𝑠) ∈ 𝐽)
125124adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (𝑟𝑠) ∈ 𝐽)
126119, 125jctild 525 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → ((𝑟𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))))
127126expimpd 453 . . . . . . . 8 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑟𝐽𝑠𝐽) ∧ ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))) → ((𝑟𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))))
128 eleq2 2817 . . . . . . . . . 10 (𝑧 = (𝑟𝑠) → (𝐷𝑧𝐷 ∈ (𝑟𝑠)))
129 imaeq2 6016 . . . . . . . . . . 11 (𝑧 = (𝑟𝑠) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) = ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)))
130129sseq1d 3975 . . . . . . . . . 10 (𝑧 = (𝑟𝑠) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤) ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))
131128, 130anbi12d 632 . . . . . . . . 9 (𝑧 = (𝑟𝑠) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)) ↔ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))))
132131rspcev 3585 . . . . . . . 8 (((𝑟𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))
133127, 132syl6 35 . . . . . . 7 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑟𝐽𝑠𝐽) ∧ ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
134133expd 415 . . . . . 6 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → ((𝑟𝐽𝑠𝐽) → (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))))
135134rexlimdvv 3191 . . . . 5 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
13658, 135syld 47 . . . 4 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
137136ralrimivva 3178 . . 3 (𝜑 → ∀𝑣𝐾𝑤𝐿 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
138 vex 3448 . . . . . 6 𝑣 ∈ V
139 vex 3448 . . . . . 6 𝑤 ∈ V
140138, 139xpex 7709 . . . . 5 (𝑣 × 𝑤) ∈ V
141140rgen2w 3049 . . . 4 𝑣𝐾𝑤𝐿 (𝑣 × 𝑤) ∈ V
142 eqid 2729 . . . . 5 (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤)) = (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))
143 eleq2 2817 . . . . . 6 (𝑦 = (𝑣 × 𝑤) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤)))
144 sseq2 3970 . . . . . . . 8 (𝑦 = (𝑣 × 𝑤) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))
145144anbi2d 630 . . . . . . 7 (𝑦 = (𝑣 × 𝑤) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦) ↔ (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
146145rexbidv 3157 . . . . . 6 (𝑦 = (𝑣 × 𝑤) → (∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
147143, 146imbi12d 344 . . . . 5 (𝑦 = (𝑣 × 𝑤) → ((((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)) ↔ (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))))
148142, 147ralrnmpo 7508 . . . 4 (∀𝑣𝐾𝑤𝐿 (𝑣 × 𝑤) ∈ V → (∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣𝐾𝑤𝐿 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))))
149141, 148ax-mp 5 . . 3 (∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣𝐾𝑤𝐿 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
150137, 149sylibr 234 . 2 (𝜑 → ∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)))
151 topontop 22834 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1522, 151syl 17 . . . 4 (𝜑𝐾 ∈ Top)
153 topontop 22834 . . . . 5 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
1547, 153syl 17 . . . 4 (𝜑𝐿 ∈ Top)
155 eqid 2729 . . . . 5 ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤)) = ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))
156155txval 23485 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))))
157152, 154, 156syl2anc 584 . . 3 (𝜑 → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))))
158 txtopon 23512 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
1592, 7, 158syl2anc 584 . . 3 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
1601, 157, 159, 14tgcnp 23174 . 2 (𝜑 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷) ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑌 × 𝑍) ∧ ∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)))))
16113, 150, 160mpbir2and 713 1 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  cop 4591  cmpt 5183   × cxp 5629  dom cdm 5631  ran crn 5632  cima 5634  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  topGenctg 17377  Topctop 22814  TopOnctopon 22831   CnP ccnp 23146   ×t ctx 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-topgen 17383  df-top 22815  df-topon 22832  df-bases 22867  df-cnp 23149  df-tx 23483
This theorem is referenced by:  limccnp2  25827
  Copyright terms: Public domain W3C validator