Step | Hyp | Ref
| Expression |
1 | | txcnp.4 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | txcnp.5 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
3 | | txcnp.8 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) |
4 | | cnpf2 22309 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
5 | 1, 2, 3, 4 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
6 | 5 | fvmptelrn 6969 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
7 | | txcnp.6 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
8 | | txcnp.9 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) |
9 | | cnpf2 22309 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) |
10 | 1, 7, 8, 9 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) |
11 | 10 | fvmptelrn 6969 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑍) |
12 | 6, 11 | opelxpd 5618 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑌 × 𝑍)) |
13 | 12 | fmpttd 6971 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑌 × 𝑍)) |
14 | | txcnp.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
15 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
16 | | opex 5373 |
. . . . . . . . . . . 12
⊢
〈𝐴, 𝐵〉 ∈ V |
17 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
18 | 17 | fvmpt2 6868 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑋 ∧ 〈𝐴, 𝐵〉 ∈ V) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈𝐴, 𝐵〉) |
19 | 15, 16, 18 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈𝐴, 𝐵〉) |
20 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
21 | 20 | fvmpt2 6868 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
22 | 15, 6, 21 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
23 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) |
24 | 23 | fvmpt2 6868 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐵 ∈ 𝑍) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) |
25 | 15, 11, 24 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) |
26 | 22, 25 | opeq12d 4809 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈𝐴, 𝐵〉) |
27 | 19, 26 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) |
28 | 27 | ralrimiva 3107 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) |
29 | | nffvmpt1 6767 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) |
30 | | nffvmpt1 6767 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) |
31 | | nffvmpt1 6767 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) |
32 | 30, 31 | nfop 4817 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 |
33 | 29, 32 | nfeq 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 |
34 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷)) |
35 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) |
36 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)) |
37 | 35, 36 | opeq12d 4809 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐷 → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉) |
38 | 34, 37 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐷 → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉)) |
39 | 33, 38 | rspc 3539 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉)) |
40 | 14, 28, 39 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉) |
41 | 40 | eleq1d 2823 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) ↔ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤))) |
42 | 41 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) ↔ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤))) |
43 | 3 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) |
44 | | simplrl 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝑣 ∈ 𝐾) |
45 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣) |
46 | | cnpimaex 22315 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷) ∧ 𝑣 ∈ 𝐾 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣) → ∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣)) |
47 | 43, 44, 45, 46 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣)) |
48 | 8 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) |
49 | | simplrr 774 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝑤 ∈ 𝐿) |
50 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤) |
51 | | cnpimaex 22315 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷) ∧ 𝑤 ∈ 𝐿 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤) → ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) |
52 | 48, 49, 50, 51 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) |
53 | 47, 52 | jca 511 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → (∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) |
54 | 53 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → ((((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤) → (∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)))) |
55 | | opelxp 5616 |
. . . . . . 7
⊢
(〈((𝑥 ∈
𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤) ↔ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) |
56 | | reeanv 3292 |
. . . . . . 7
⊢
(∃𝑟 ∈
𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) ↔ (∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) |
57 | 54, 55, 56 | 3imtr4g 295 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)))) |
58 | 42, 57 | sylbid 239 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)))) |
59 | | an4 652 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) ↔ ((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) |
60 | | elin 3899 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (𝑟 ∩ 𝑠) ↔ (𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠)) |
61 | 60 | biimpri 227 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) → 𝐷 ∈ (𝑟 ∩ 𝑠)) |
62 | 61 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) → 𝐷 ∈ (𝑟 ∩ 𝑠))) |
63 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → 𝑟 ∈ 𝐽) |
64 | | toponss 21984 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑟 ∈ 𝐽) → 𝑟 ⊆ 𝑋) |
65 | 1, 63, 64 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → 𝑟 ⊆ 𝑋) |
66 | | ssinss1 4168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ⊆ 𝑋 → (𝑟 ∩ 𝑠) ⊆ 𝑋) |
67 | 66 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → (𝑟 ∩ 𝑠) ⊆ 𝑋) |
68 | 67 | sselda 3917 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ 𝑋) |
69 | 28 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) |
70 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) |
71 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) |
72 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) |
73 | 71, 72 | nfop 4817 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉 |
74 | 70, 73 | nfeq 2919 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉 |
75 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡)) |
76 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡)) |
77 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)) |
78 | 76, 77 | opeq12d 4809 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉) |
79 | 75, 78 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑡 → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉)) |
80 | 74, 79 | rspc 3539 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉)) |
81 | 68, 69, 80 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉) |
82 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ (𝑟 ∩ 𝑠)) |
83 | 82 | elin1d 4128 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ 𝑟) |
84 | 5 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
85 | 84 | ffund 6588 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → Fun (𝑥 ∈ 𝑋 ↦ 𝐴)) |
86 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑟 ∩ 𝑠) ⊆ 𝑋) |
87 | 84 | fdmd 6595 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → dom (𝑥 ∈ 𝑋 ↦ 𝐴) = 𝑋) |
88 | 86, 87 | sseqtrrd 3958 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) |
89 | 88, 82 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) |
90 | | funfvima 7088 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 𝐴) ∧ 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) → (𝑡 ∈ 𝑟 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟))) |
91 | 85, 89, 90 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑡 ∈ 𝑟 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟))) |
92 | 83, 91 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟)) |
93 | 82 | elin2d 4129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ 𝑠) |
94 | 10 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) |
95 | 94 | ffund 6588 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → Fun (𝑥 ∈ 𝑋 ↦ 𝐵)) |
96 | 94 | fdmd 6595 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
97 | 86, 96 | sseqtrrd 3958 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
98 | 97, 82 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
99 | | funfvima 7088 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 𝐵) ∧ 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐵)) → (𝑡 ∈ 𝑠 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
100 | 95, 98, 99 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑡 ∈ 𝑠 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
101 | 93, 100 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) |
102 | 92, 101 | opelxpd 5618 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉 ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
103 | 81, 102 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
104 | 103 | ralrimiva 3107 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → ∀𝑡 ∈ (𝑟 ∩ 𝑠)((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
105 | 13 | ffund 6588 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Fun (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
106 | 105 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → Fun (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
107 | 13 | fdmd 6595 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = 𝑋) |
108 | 107 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = 𝑋) |
109 | 67, 108 | sseqtrrd 3958 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
110 | | funimass4 6816 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∧ (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟 ∩ 𝑠)((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)))) |
111 | 106, 109,
110 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟 ∩ 𝑠)((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)))) |
112 | 104, 111 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
113 | 65, 112 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
114 | 113 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
115 | | xpss12 5595 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤)) |
116 | | sstr2 3924 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) → ((((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) |
117 | 114, 115,
116 | syl2im 40 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) |
118 | 62, 117 | anim12d 608 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤)))) |
119 | 59, 118 | syl5bi 241 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤)))) |
120 | | topontop 21970 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
121 | 1, 120 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ Top) |
122 | | inopn 21956 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → (𝑟 ∩ 𝑠) ∈ 𝐽) |
123 | 122 | 3expb 1118 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (𝑟 ∩ 𝑠) ∈ 𝐽) |
124 | 121, 123 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (𝑟 ∩ 𝑠) ∈ 𝐽) |
125 | 124 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (𝑟 ∩ 𝑠) ∈ 𝐽) |
126 | 119, 125 | jctild 525 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → ((𝑟 ∩ 𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))))) |
127 | 126 | expimpd 453 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) ∧ ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) → ((𝑟 ∩ 𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))))) |
128 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑟 ∩ 𝑠) → (𝐷 ∈ 𝑧 ↔ 𝐷 ∈ (𝑟 ∩ 𝑠))) |
129 | | imaeq2 5954 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑟 ∩ 𝑠) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) = ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠))) |
130 | 129 | sseq1d 3948 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑟 ∩ 𝑠) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤) ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) |
131 | 128, 130 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑧 = (𝑟 ∩ 𝑠) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)) ↔ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤)))) |
132 | 131 | rspcev 3552 |
. . . . . . . 8
⊢ (((𝑟 ∩ 𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))) |
133 | 127, 132 | syl6 35 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) ∧ ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
134 | 133 | expd 415 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → ((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))))) |
135 | 134 | rexlimdvv 3221 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
136 | 58, 135 | syld 47 |
. . . 4
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
137 | 136 | ralrimivva 3114 |
. . 3
⊢ (𝜑 → ∀𝑣 ∈ 𝐾 ∀𝑤 ∈ 𝐿 (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
138 | | vex 3426 |
. . . . . 6
⊢ 𝑣 ∈ V |
139 | | vex 3426 |
. . . . . 6
⊢ 𝑤 ∈ V |
140 | 138, 139 | xpex 7581 |
. . . . 5
⊢ (𝑣 × 𝑤) ∈ V |
141 | 140 | rgen2w 3076 |
. . . 4
⊢
∀𝑣 ∈
𝐾 ∀𝑤 ∈ 𝐿 (𝑣 × 𝑤) ∈ V |
142 | | eqid 2738 |
. . . . 5
⊢ (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) = (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) |
143 | | eleq2 2827 |
. . . . . 6
⊢ (𝑦 = (𝑣 × 𝑤) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤))) |
144 | | sseq2 3943 |
. . . . . . . 8
⊢ (𝑦 = (𝑣 × 𝑤) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))) |
145 | 144 | anbi2d 628 |
. . . . . . 7
⊢ (𝑦 = (𝑣 × 𝑤) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦) ↔ (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
146 | 145 | rexbidv 3225 |
. . . . . 6
⊢ (𝑦 = (𝑣 × 𝑤) → (∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
147 | 143, 146 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = (𝑣 × 𝑤) → ((((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦)) ↔ (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))))) |
148 | 142, 147 | ralrnmpo 7390 |
. . . 4
⊢
(∀𝑣 ∈
𝐾 ∀𝑤 ∈ 𝐿 (𝑣 × 𝑤) ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣 ∈ 𝐾 ∀𝑤 ∈ 𝐿 (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))))) |
149 | 141, 148 | ax-mp 5 |
. . 3
⊢
(∀𝑦 ∈
ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣 ∈ 𝐾 ∀𝑤 ∈ 𝐿 (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
150 | 137, 149 | sylibr 233 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦))) |
151 | | topontop 21970 |
. . . . 5
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
152 | 2, 151 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Top) |
153 | | topontop 21970 |
. . . . 5
⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) |
154 | 7, 153 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ Top) |
155 | | eqid 2738 |
. . . . 5
⊢ ran
(𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) = ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) |
156 | 155 | txval 22623 |
. . . 4
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)))) |
157 | 152, 154,
156 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)))) |
158 | | txtopon 22650 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍))) |
159 | 2, 7, 158 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍))) |
160 | 1, 157, 159, 14 | tgcnp 22312 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷) ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑌 × 𝑍) ∧ ∀𝑦 ∈ ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦))))) |
161 | 13, 150, 160 | mpbir2and 709 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷)) |