| Step | Hyp | Ref
| Expression |
| 1 | | redivvald.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 2 | | redivvald.z |
. . . 4
⊢ (𝜑 → 𝐵 ≠ 0) |
| 3 | | ax-rrecex 11146 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 · 𝑦) = 1) |
| 4 | 1, 2, 3 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 · 𝑦) = 1) |
| 5 | | oveq2 7397 |
. . . . 5
⊢ (𝑥 = (𝑦 · 𝐴) → (𝐵 · 𝑥) = (𝐵 · (𝑦 · 𝐴))) |
| 6 | 5 | eqeq1d 2732 |
. . . 4
⊢ (𝑥 = (𝑦 · 𝐴) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝑦 · 𝐴)) = 𝐴)) |
| 7 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝑦 ∈ ℝ) |
| 8 | | redivvald.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝐴 ∈ ℝ) |
| 10 | 7, 9 | remulcld 11210 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℝ) |
| 11 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → (𝐵 · 𝑦) = 1) |
| 12 | 11 | oveq1d 7404 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴)) |
| 13 | 1 | recnd 11208 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝐵 ∈ ℂ) |
| 15 | 7 | recnd 11208 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝑦 ∈ ℂ) |
| 16 | 8 | recnd 11208 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 17 | 16 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝐴 ∈ ℂ) |
| 18 | 14, 15, 17 | mulassd 11203 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (𝐵 · (𝑦 · 𝐴))) |
| 19 | | remullid 42417 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (1
· 𝐴) = 𝐴) |
| 20 | 8, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| 21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → (1 · 𝐴) = 𝐴) |
| 22 | 12, 18, 21 | 3eqtr3d 2773 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → (𝐵 · (𝑦 · 𝐴)) = 𝐴) |
| 23 | 6, 10, 22 | rspcedvdw 3594 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) |
| 24 | 4, 23 | rexlimddv 3141 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) |
| 25 | | eqtr3 2752 |
. . . 4
⊢ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → (𝐵 · 𝑥) = (𝐵 · 𝑦)) |
| 26 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ) |
| 27 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ) |
| 28 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐵 ∈ ℝ) |
| 29 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐵 ≠ 0) |
| 30 | 26, 27, 28, 29 | remulcand 42422 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐵 · 𝑥) = (𝐵 · 𝑦) ↔ 𝑥 = 𝑦)) |
| 31 | 25, 30 | imbitrid 244 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)) |
| 32 | 31 | ralrimivva 3181 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)) |
| 33 | | oveq2 7397 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦)) |
| 34 | 33 | eqeq1d 2732 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑦) = 𝐴)) |
| 35 | 34 | reu4 3704 |
. 2
⊢
(∃!𝑥 ∈
ℝ (𝐵 · 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))) |
| 36 | 24, 32, 35 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) |