Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rediveud Structured version   Visualization version   GIF version

Theorem rediveud 42476
Description: Existential uniqueness of real quotients. (Contributed by SN, 25-Nov-2025.)
Hypotheses
Ref Expression
redivvald.a (𝜑𝐴 ∈ ℝ)
redivvald.b (𝜑𝐵 ∈ ℝ)
redivvald.z (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
rediveud (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem rediveud
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 redivvald.b . . . 4 (𝜑𝐵 ∈ ℝ)
2 redivvald.z . . . 4 (𝜑𝐵 ≠ 0)
3 ax-rrecex 11073 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 · 𝑦) = 1)
41, 2, 3syl2anc 584 . . 3 (𝜑 → ∃𝑦 ∈ ℝ (𝐵 · 𝑦) = 1)
5 oveq2 7349 . . . . 5 (𝑥 = (𝑦 · 𝐴) → (𝐵 · 𝑥) = (𝐵 · (𝑦 · 𝐴)))
65eqeq1d 2733 . . . 4 (𝑥 = (𝑦 · 𝐴) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝑦 · 𝐴)) = 𝐴))
7 simprl 770 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝑦 ∈ ℝ)
8 redivvald.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
98adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝐴 ∈ ℝ)
107, 9remulcld 11137 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℝ)
11 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → (𝐵 · 𝑦) = 1)
1211oveq1d 7356 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
131recnd 11135 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1413adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝐵 ∈ ℂ)
157recnd 11135 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
168recnd 11135 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → 𝐴 ∈ ℂ)
1814, 15, 17mulassd 11130 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (𝐵 · (𝑦 · 𝐴)))
19 remullid 42467 . . . . . . 7 (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
208, 19syl 17 . . . . . 6 (𝜑 → (1 · 𝐴) = 𝐴)
2120adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → (1 · 𝐴) = 𝐴)
2212, 18, 213eqtr3d 2774 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → (𝐵 · (𝑦 · 𝐴)) = 𝐴)
236, 10, 22rspcedvdw 3575 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 · 𝑦) = 1)) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
244, 23rexlimddv 3139 . 2 (𝜑 → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
25 eqtr3 2753 . . . 4 (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → (𝐵 · 𝑥) = (𝐵 · 𝑦))
26 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
27 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
281adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐵 ∈ ℝ)
292adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐵 ≠ 0)
3026, 27, 28, 29remulcand 42472 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐵 · 𝑥) = (𝐵 · 𝑦) ↔ 𝑥 = 𝑦))
3125, 30imbitrid 244 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
3231ralrimivva 3175 . 2 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
33 oveq2 7349 . . . 4 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
3433eqeq1d 2733 . . 3 (𝑥 = 𝑦 → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑦) = 𝐴))
3534reu4 3685 . 2 (∃!𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
3624, 32, 35sylanbrc 583 1 (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  ∃!wreu 3344  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   · cmul 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-2 12183  df-3 12184  df-resub 42399
This theorem is referenced by:  sn-redivcld  42477  redivmuld  42478
  Copyright terms: Public domain W3C validator