Step | Hyp | Ref
| Expression |
1 | | brfae.3 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐷 ↑m ∪ dom 𝑀)) |
2 | | brfae.4 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝐷 ↑m ∪ dom 𝑀)) |
3 | | simpl 483 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) |
4 | 3 | eleq1d 2823 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ↔ 𝐹 ∈ (dom 𝑅 ↑m ∪ dom 𝑀))) |
5 | | simpr 485 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
6 | 5 | eleq1d 2823 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ↔ 𝐺 ∈ (dom 𝑅 ↑m ∪ dom 𝑀))) |
7 | 4, 6 | anbi12d 631 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ↔ (𝐹 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)))) |
8 | 3 | fveq1d 6776 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
9 | 5 | fveq1d 6776 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔‘𝑥) = (𝐺‘𝑥)) |
10 | 8, 9 | breq12d 5087 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
11 | 10 | rabbidv 3414 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)} = {𝑥 ∈ ∪ dom
𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}) |
12 | 11 | breq1d 5084 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ({𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀 ↔ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}a.e.𝑀)) |
13 | 7, 12 | anbi12d 631 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀) ↔ ((𝐹 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}a.e.𝑀))) |
14 | | eqid 2738 |
. . . 4
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)} |
15 | 13, 14 | brabga 5447 |
. . 3
⊢ ((𝐹 ∈ (𝐷 ↑m ∪ dom 𝑀) ∧ 𝐺 ∈ (𝐷 ↑m ∪ dom 𝑀)) → (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}𝐺 ↔ ((𝐹 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}a.e.𝑀))) |
16 | 1, 2, 15 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}𝐺 ↔ ((𝐹 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}a.e.𝑀))) |
17 | | brfae.1 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ V) |
18 | | brfae.2 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) |
19 | | faeval 32214 |
. . . 4
⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑅~ a.e.𝑀) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}) |
20 | 17, 18, 19 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑅~ a.e.𝑀) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}) |
21 | 20 | breqd 5085 |
. 2
⊢ (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}𝐺)) |
22 | | brfae.0 |
. . . . . 6
⊢ dom 𝑅 = 𝐷 |
23 | 22 | oveq1i 7285 |
. . . . 5
⊢ (dom
𝑅 ↑m ∪ dom 𝑀) = (𝐷 ↑m ∪ dom 𝑀) |
24 | 1, 23 | eleqtrrdi 2850 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) |
25 | 2, 23 | eleqtrrdi 2850 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) |
26 | 24, 25 | jca 512 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅 ↑m ∪ dom 𝑀))) |
27 | 26 | biantrurd 533 |
. 2
⊢ (𝜑 → ({𝑥 ∈ ∪ dom
𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}a.e.𝑀 ↔ ((𝐹 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}a.e.𝑀))) |
28 | 16, 21, 27 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}a.e.𝑀)) |