Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfae Structured version   Visualization version   GIF version

Theorem brfae 33234
Description: 'almost everywhere' relation for two functions 𝐹 and 𝐺 with regard to the measure 𝑀. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
brfae.0 dom 𝑅 = 𝐷
brfae.1 (𝜑𝑅 ∈ V)
brfae.2 (𝜑𝑀 ran measures)
brfae.3 (𝜑𝐹 ∈ (𝐷m dom 𝑀))
brfae.4 (𝜑𝐺 ∈ (𝐷m dom 𝑀))
Assertion
Ref Expression
brfae (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑀   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)

Proof of Theorem brfae
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brfae.3 . . 3 (𝜑𝐹 ∈ (𝐷m dom 𝑀))
2 brfae.4 . . 3 (𝜑𝐺 ∈ (𝐷m dom 𝑀))
3 simpl 483 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
43eleq1d 2818 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓 ∈ (dom 𝑅m dom 𝑀) ↔ 𝐹 ∈ (dom 𝑅m dom 𝑀)))
5 simpr 485 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
65eleq1d 2818 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔 ∈ (dom 𝑅m dom 𝑀) ↔ 𝐺 ∈ (dom 𝑅m dom 𝑀)))
74, 6anbi12d 631 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ↔ (𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀))))
83fveq1d 6890 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑥) = (𝐹𝑥))
95fveq1d 6890 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔𝑥) = (𝐺𝑥))
108, 9breq12d 5160 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥) ↔ (𝐹𝑥)𝑅(𝐺𝑥)))
1110rabbidv 3440 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)} = {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)})
1211breq1d 5157 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ({𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
137, 12anbi12d 631 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀) ↔ ((𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
14 eqid 2732 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}
1513, 14brabga 5533 . . 3 ((𝐹 ∈ (𝐷m dom 𝑀) ∧ 𝐺 ∈ (𝐷m dom 𝑀)) → (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}𝐺 ↔ ((𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
161, 2, 15syl2anc 584 . 2 (𝜑 → (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}𝐺 ↔ ((𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
17 brfae.1 . . . 4 (𝜑𝑅 ∈ V)
18 brfae.2 . . . 4 (𝜑𝑀 ran measures)
19 faeval 33232 . . . 4 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
2017, 18, 19syl2anc 584 . . 3 (𝜑 → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
2120breqd 5158 . 2 (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}𝐺))
22 brfae.0 . . . . . 6 dom 𝑅 = 𝐷
2322oveq1i 7415 . . . . 5 (dom 𝑅m dom 𝑀) = (𝐷m dom 𝑀)
241, 23eleqtrrdi 2844 . . . 4 (𝜑𝐹 ∈ (dom 𝑅m dom 𝑀))
252, 23eleqtrrdi 2844 . . . 4 (𝜑𝐺 ∈ (dom 𝑅m dom 𝑀))
2624, 25jca 512 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)))
2726biantrurd 533 . 2 (𝜑 → ({𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀 ↔ ((𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
2816, 21, 273bitr4d 310 1 (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474   cuni 4907   class class class wbr 5147  {copab 5209  dom cdm 5675  ran crn 5676  cfv 6540  (class class class)co 7405  m cmap 8816  measurescmeas 33181  a.e.cae 33223  ~ a.e.cfae 33224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-fae 33231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator