| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cyclnspth | Structured version Visualization version GIF version | ||
| Description: A (non-trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| cyclnspth | ⊢ (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscycl 29769 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 2 | relpths 29696 | . . . . . . . . 9 ⊢ Rel (Paths‘𝐺) | |
| 3 | 2 | brrelex1i 5670 | . . . . . . . 8 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹 ∈ V) |
| 4 | hasheq0 14270 | . . . . . . . . . 10 ⊢ (𝐹 ∈ V → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅)) | |
| 5 | 4 | necon3bid 2972 | . . . . . . . . 9 ⊢ (𝐹 ∈ V → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅)) |
| 6 | 5 | bicomd 223 | . . . . . . . 8 ⊢ (𝐹 ∈ V → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0)) |
| 7 | 3, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0)) |
| 8 | 7 | biimpa 476 | . . . . . 6 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0) |
| 9 | spthdep 29712 | . . . . . . . 8 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) | |
| 10 | 9 | neneqd 2933 | . . . . . . 7 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 11 | 10 | expcom 413 | . . . . . 6 ⊢ ((♯‘𝐹) ≠ 0 → (𝐹(SPaths‘𝐺)𝑃 → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
| 12 | 8, 11 | syl 17 | . . . . 5 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (𝐹(SPaths‘𝐺)𝑃 → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
| 13 | 12 | con2d 134 | . . . 4 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
| 14 | 13 | impancom 451 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹 ≠ ∅ → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
| 15 | 1, 14 | sylbi 217 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹 ≠ ∅ → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
| 16 | 15 | com12 32 | 1 ⊢ (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 0cc0 11006 ♯chash 14237 Pathscpths 29688 SPathscspths 29689 Cyclesccycls 29763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-wlks 29578 df-trls 29669 df-pths 29692 df-spths 29693 df-cycls 29765 |
| This theorem is referenced by: spthcycl 35173 |
| Copyright terms: Public domain | W3C validator |