![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyclnspth | Structured version Visualization version GIF version |
Description: A (non-trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
cyclnspth | ⊢ (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscycl 27147 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
2 | relpths 27076 | . . . . . . . . 9 ⊢ Rel (Paths‘𝐺) | |
3 | 2 | brrelex1i 5408 | . . . . . . . 8 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹 ∈ V) |
4 | hasheq0 13473 | . . . . . . . . . 10 ⊢ (𝐹 ∈ V → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅)) | |
5 | 4 | necon3bid 3013 | . . . . . . . . 9 ⊢ (𝐹 ∈ V → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅)) |
6 | 5 | bicomd 215 | . . . . . . . 8 ⊢ (𝐹 ∈ V → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0)) |
7 | 3, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0)) |
8 | 7 | biimpa 470 | . . . . . 6 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0) |
9 | spthdep 27090 | . . . . . . . 8 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) | |
10 | 9 | neneqd 2974 | . . . . . . 7 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
11 | 10 | expcom 404 | . . . . . 6 ⊢ ((♯‘𝐹) ≠ 0 → (𝐹(SPaths‘𝐺)𝑃 → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
12 | 8, 11 | syl 17 | . . . . 5 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (𝐹(SPaths‘𝐺)𝑃 → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
13 | 12 | con2d 132 | . . . 4 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
14 | 13 | impancom 445 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹 ≠ ∅ → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
15 | 1, 14 | sylbi 209 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹 ≠ ∅ → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
16 | 15 | com12 32 | 1 ⊢ (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 Vcvv 3398 ∅c0 4141 class class class wbr 4888 ‘cfv 6137 0cc0 10274 ♯chash 13439 Pathscpths 27068 SPathscspths 27069 Cyclesccycls 27141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ifp 1047 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-n0 11647 df-z 11733 df-uz 11997 df-fz 12648 df-fzo 12789 df-hash 13440 df-word 13604 df-wlks 26951 df-trls 27047 df-pths 27072 df-spths 27073 df-cycls 27143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |