Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cyclnspth | Structured version Visualization version GIF version |
Description: A (non-trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
cyclnspth | ⊢ (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscycl 28146 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
2 | relpths 28075 | . . . . . . . . 9 ⊢ Rel (Paths‘𝐺) | |
3 | 2 | brrelex1i 5640 | . . . . . . . 8 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹 ∈ V) |
4 | hasheq0 14067 | . . . . . . . . . 10 ⊢ (𝐹 ∈ V → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅)) | |
5 | 4 | necon3bid 2988 | . . . . . . . . 9 ⊢ (𝐹 ∈ V → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅)) |
6 | 5 | bicomd 222 | . . . . . . . 8 ⊢ (𝐹 ∈ V → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0)) |
7 | 3, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0)) |
8 | 7 | biimpa 477 | . . . . . 6 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0) |
9 | spthdep 28089 | . . . . . . . 8 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) | |
10 | 9 | neneqd 2948 | . . . . . . 7 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
11 | 10 | expcom 414 | . . . . . 6 ⊢ ((♯‘𝐹) ≠ 0 → (𝐹(SPaths‘𝐺)𝑃 → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
12 | 8, 11 | syl 17 | . . . . 5 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (𝐹(SPaths‘𝐺)𝑃 → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
13 | 12 | con2d 134 | . . . 4 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
14 | 13 | impancom 452 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹 ≠ ∅ → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
15 | 1, 14 | sylbi 216 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹 ≠ ∅ → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
16 | 15 | com12 32 | 1 ⊢ (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3431 ∅c0 4258 class class class wbr 5075 ‘cfv 6428 0cc0 10860 ♯chash 14033 Pathscpths 28067 SPathscspths 28068 Cyclesccycls 28140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8487 df-map 8606 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-card 9686 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-n0 12223 df-z 12309 df-uz 12572 df-fz 13229 df-fzo 13372 df-hash 14034 df-word 14207 df-wlks 27955 df-trls 28048 df-pths 28071 df-spths 28072 df-cycls 28142 |
This theorem is referenced by: spthcycl 33078 |
Copyright terms: Public domain | W3C validator |