![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhsssm | Structured version Visualization version GIF version |
Description: The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhss.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
Ref | Expression |
---|---|
hhsssm | ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . 3 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
2 | 1 | smfval 28153 | . 2 ⊢ ( ·𝑠OLD ‘𝑊) = (2nd ‘(1st ‘𝑊)) |
3 | hhss.1 | . . . . 5 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
4 | 3 | fveq2i 6496 | . . . 4 ⊢ (1st ‘𝑊) = (1st ‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) |
5 | opex 5207 | . . . . 5 ⊢ 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 ∈ V | |
6 | normf 28673 | . . . . . . 7 ⊢ normℎ: ℋ⟶ℝ | |
7 | ax-hilex 28549 | . . . . . . 7 ⊢ ℋ ∈ V | |
8 | fex 6809 | . . . . . . 7 ⊢ ((normℎ: ℋ⟶ℝ ∧ ℋ ∈ V) → normℎ ∈ V) | |
9 | 6, 7, 8 | mp2an 679 | . . . . . 6 ⊢ normℎ ∈ V |
10 | 9 | resex 5738 | . . . . 5 ⊢ (normℎ ↾ 𝐻) ∈ V |
11 | 5, 10 | op1st 7503 | . . . 4 ⊢ (1st ‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) = 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 |
12 | 4, 11 | eqtri 2796 | . . 3 ⊢ (1st ‘𝑊) = 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 |
13 | 12 | fveq2i 6496 | . 2 ⊢ (2nd ‘(1st ‘𝑊)) = (2nd ‘〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉) |
14 | hilablo 28710 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
15 | resexg 5737 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ V) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ V |
17 | hvmulex 28561 | . . . 4 ⊢ ·ℎ ∈ V | |
18 | 17 | resex 5738 | . . 3 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) ∈ V |
19 | 16, 18 | op2nd 7504 | . 2 ⊢ (2nd ‘〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉) = ( ·ℎ ↾ (ℂ × 𝐻)) |
20 | 2, 13, 19 | 3eqtrri 2801 | 1 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 Vcvv 3409 〈cop 4441 × cxp 5399 ↾ cres 5403 ⟶wf 6178 ‘cfv 6182 1st c1st 7493 2nd c2nd 7494 ℂcc 10327 ℝcr 10328 AbelOpcablo 28092 ·𝑠OLD cns 28135 ℋchba 28469 +ℎ cva 28470 ·ℎ csm 28471 normℎcno 28473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-pre-sup 10407 ax-hilex 28549 ax-hfvadd 28550 ax-hvcom 28551 ax-hvass 28552 ax-hv0cl 28553 ax-hvaddid 28554 ax-hfvmul 28555 ax-hvmulid 28556 ax-hvdistr2 28559 ax-hvmul0 28560 ax-hfi 28629 ax-his1 28632 ax-his3 28634 ax-his4 28635 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-sup 8695 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-2 11497 df-3 11498 df-n0 11702 df-z 11788 df-uz 12053 df-rp 12199 df-seq 13179 df-exp 13239 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-grpo 28041 df-ablo 28093 df-sm 28145 df-hnorm 28518 df-hvsub 28521 |
This theorem is referenced by: hhsst 28816 hhsssh2 28820 |
Copyright terms: Public domain | W3C validator |