HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsssm Structured version   Visualization version   GIF version

Theorem hhsssm 28962
Description: The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhss.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
Assertion
Ref Expression
hhsssm ( · ↾ (ℂ × 𝐻)) = ( ·𝑠OLD𝑊)

Proof of Theorem hhsssm
StepHypRef Expression
1 eqid 2818 . . 3 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
21smfval 28309 . 2 ( ·𝑠OLD𝑊) = (2nd ‘(1st𝑊))
3 hhss.1 . . . . 5 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
43fveq2i 6666 . . . 4 (1st𝑊) = (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
5 opex 5347 . . . . 5 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ V
6 normf 28827 . . . . . . 7 norm: ℋ⟶ℝ
7 ax-hilex 28703 . . . . . . 7 ℋ ∈ V
8 fex 6980 . . . . . . 7 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
96, 7, 8mp2an 688 . . . . . 6 norm ∈ V
109resex 5892 . . . . 5 (norm𝐻) ∈ V
115, 10op1st 7686 . . . 4 (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
124, 11eqtri 2841 . . 3 (1st𝑊) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
1312fveq2i 6666 . 2 (2nd ‘(1st𝑊)) = (2nd ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩)
14 hilablo 28864 . . . 4 + ∈ AbelOp
15 resexg 5891 . . . 4 ( + ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ V)
1614, 15ax-mp 5 . . 3 ( + ↾ (𝐻 × 𝐻)) ∈ V
17 hvmulex 28715 . . . 4 · ∈ V
1817resex 5892 . . 3 ( · ↾ (ℂ × 𝐻)) ∈ V
1916, 18op2nd 7687 . 2 (2nd ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩) = ( · ↾ (ℂ × 𝐻))
202, 13, 193eqtrri 2846 1 ( · ↾ (ℂ × 𝐻)) = ( ·𝑠OLD𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1528  wcel 2105  Vcvv 3492  cop 4563   × cxp 5546  cres 5550  wf 6344  cfv 6348  1st c1st 7676  2nd c2nd 7677  cc 10523  cr 10524  AbelOpcablo 28248   ·𝑠OLD cns 28291  chba 28623   + cva 28624   · csm 28625  normcno 28627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvdistr2 28713  ax-hvmul0 28714  ax-hfi 28783  ax-his1 28786  ax-his3 28788  ax-his4 28789
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-grpo 28197  df-ablo 28249  df-sm 28301  df-hnorm 28672  df-hvsub 28675
This theorem is referenced by:  hhsst  28970  hhsssh2  28974
  Copyright terms: Public domain W3C validator