HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsssm Structured version   Visualization version   GIF version

Theorem hhsssm 29908
Description: The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhss.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
Assertion
Ref Expression
hhsssm ( · ↾ (ℂ × 𝐻)) = ( ·𝑠OLD𝑊)

Proof of Theorem hhsssm
StepHypRef Expression
1 eqid 2736 . . 3 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
21smfval 29255 . 2 ( ·𝑠OLD𝑊) = (2nd ‘(1st𝑊))
3 hhss.1 . . . . 5 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
43fveq2i 6828 . . . 4 (1st𝑊) = (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
5 opex 5409 . . . . 5 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ V
6 normf 29773 . . . . . . 7 norm: ℋ⟶ℝ
7 ax-hilex 29649 . . . . . . 7 ℋ ∈ V
8 fex 7158 . . . . . . 7 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
96, 7, 8mp2an 689 . . . . . 6 norm ∈ V
109resex 5971 . . . . 5 (norm𝐻) ∈ V
115, 10op1st 7907 . . . 4 (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
124, 11eqtri 2764 . . 3 (1st𝑊) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
1312fveq2i 6828 . 2 (2nd ‘(1st𝑊)) = (2nd ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩)
14 hilablo 29810 . . . 4 + ∈ AbelOp
15 resexg 5969 . . . 4 ( + ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ V)
1614, 15ax-mp 5 . . 3 ( + ↾ (𝐻 × 𝐻)) ∈ V
17 hvmulex 29661 . . . 4 · ∈ V
1817resex 5971 . . 3 ( · ↾ (ℂ × 𝐻)) ∈ V
1916, 18op2nd 7908 . 2 (2nd ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩) = ( · ↾ (ℂ × 𝐻))
202, 13, 193eqtrri 2769 1 ( · ↾ (ℂ × 𝐻)) = ( ·𝑠OLD𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3441  cop 4579   × cxp 5618  cres 5622  wf 6475  cfv 6479  1st c1st 7897  2nd c2nd 7898  cc 10970  cr 10971  AbelOpcablo 29194   ·𝑠OLD cns 29237  chba 29569   + cva 29570   · csm 29571  normcno 29573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-hilex 29649  ax-hfvadd 29650  ax-hvcom 29651  ax-hvass 29652  ax-hv0cl 29653  ax-hvaddid 29654  ax-hfvmul 29655  ax-hvmulid 29656  ax-hvdistr2 29659  ax-hvmul0 29660  ax-hfi 29729  ax-his1 29732  ax-his3 29734  ax-his4 29735
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-seq 13823  df-exp 13884  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-grpo 29143  df-ablo 29195  df-sm 29247  df-hnorm 29618  df-hvsub 29621
This theorem is referenced by:  hhsst  29916  hhsssh2  29920
  Copyright terms: Public domain W3C validator