![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhsssm | Structured version Visualization version GIF version |
Description: The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhss.1 | β’ π = β¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β© |
Ref | Expression |
---|---|
hhsssm | β’ ( Β·β βΎ (β Γ π»)) = ( Β·π OLD βπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
2 | 1 | smfval 30291 | . 2 β’ ( Β·π OLD βπ) = (2nd β(1st βπ)) |
3 | hhss.1 | . . . . 5 β’ π = β¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β© | |
4 | 3 | fveq2i 6894 | . . . 4 β’ (1st βπ) = (1st ββ¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β©) |
5 | opex 5464 | . . . . 5 β’ β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β© β V | |
6 | normf 30809 | . . . . . . 7 β’ normβ: ββΆβ | |
7 | ax-hilex 30685 | . . . . . . 7 β’ β β V | |
8 | fex 7230 | . . . . . . 7 β’ ((normβ: ββΆβ β§ β β V) β normβ β V) | |
9 | 6, 7, 8 | mp2an 689 | . . . . . 6 β’ normβ β V |
10 | 9 | resex 6029 | . . . . 5 β’ (normβ βΎ π») β V |
11 | 5, 10 | op1st 7987 | . . . 4 β’ (1st ββ¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β©) = β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β© |
12 | 4, 11 | eqtri 2759 | . . 3 β’ (1st βπ) = β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β© |
13 | 12 | fveq2i 6894 | . 2 β’ (2nd β(1st βπ)) = (2nd ββ¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©) |
14 | hilablo 30846 | . . . 4 β’ +β β AbelOp | |
15 | resexg 6027 | . . . 4 β’ ( +β β AbelOp β ( +β βΎ (π» Γ π»)) β V) | |
16 | 14, 15 | ax-mp 5 | . . 3 β’ ( +β βΎ (π» Γ π»)) β V |
17 | hvmulex 30697 | . . . 4 β’ Β·β β V | |
18 | 17 | resex 6029 | . . 3 β’ ( Β·β βΎ (β Γ π»)) β V |
19 | 16, 18 | op2nd 7988 | . 2 β’ (2nd ββ¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©) = ( Β·β βΎ (β Γ π»)) |
20 | 2, 13, 19 | 3eqtrri 2764 | 1 β’ ( Β·β βΎ (β Γ π»)) = ( Β·π OLD βπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 Vcvv 3473 β¨cop 4634 Γ cxp 5674 βΎ cres 5678 βΆwf 6539 βcfv 6543 1st c1st 7977 2nd c2nd 7978 βcc 11114 βcr 11115 AbelOpcablo 30230 Β·π OLD cns 30273 βchba 30605 +β cva 30606 Β·β csm 30607 normβcno 30609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-hilex 30685 ax-hfvadd 30686 ax-hvcom 30687 ax-hvass 30688 ax-hv0cl 30689 ax-hvaddid 30690 ax-hfvmul 30691 ax-hvmulid 30692 ax-hvdistr2 30695 ax-hvmul0 30696 ax-hfi 30765 ax-his1 30768 ax-his3 30770 ax-his4 30771 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-grpo 30179 df-ablo 30231 df-sm 30283 df-hnorm 30654 df-hvsub 30657 |
This theorem is referenced by: hhsst 30952 hhsssh2 30956 |
Copyright terms: Public domain | W3C validator |