MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtresfn Structured version   Visualization version   GIF version

Theorem fvtresfn 6909
Description: Functionality of a tuple-restriction function. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fvtresfn.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
fvtresfn (𝑋𝐵 → (𝐹𝑋) = (𝑋𝑉))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fvtresfn
StepHypRef Expression
1 resexg 5949 . 2 (𝑋𝐵 → (𝑋𝑉) ∈ V)
2 reseq1 5897 . . 3 (𝑥 = 𝑋 → (𝑥𝑉) = (𝑋𝑉))
3 fvtresfn.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
42, 3fvmptg 6905 . 2 ((𝑋𝐵 ∧ (𝑋𝑉) ∈ V) → (𝐹𝑋) = (𝑋𝑉))
51, 4mpdan 685 1 (𝑋𝐵 → (𝐹𝑋) = (𝑋𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  Vcvv 3437  cmpt 5164  cres 5602  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-res 5612  df-iota 6410  df-fun 6460  df-fv 6466
This theorem is referenced by:  symgfixf1  19094  symgfixfo  19096  pwssplit1  20370  pwssplit2  20371  pwssplit3  20372  eulerpartgbij  32388  pwssplit4  41110
  Copyright terms: Public domain W3C validator