Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvtresfn | Structured version Visualization version GIF version |
Description: Functionality of a tuple-restriction function. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fvtresfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
Ref | Expression |
---|---|
fvtresfn | ⊢ (𝑋 ∈ 𝐵 → (𝐹‘𝑋) = (𝑋 ↾ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 5934 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ↾ 𝑉) ∈ V) | |
2 | reseq1 5882 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ↾ 𝑉) = (𝑋 ↾ 𝑉)) | |
3 | fvtresfn.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) | |
4 | 2, 3 | fvmptg 6867 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑋 ↾ 𝑉) ∈ V) → (𝐹‘𝑋) = (𝑋 ↾ 𝑉)) |
5 | 1, 4 | mpdan 683 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝐹‘𝑋) = (𝑋 ↾ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ↦ cmpt 5161 ↾ cres 5590 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-res 5600 df-iota 6388 df-fun 6432 df-fv 6438 |
This theorem is referenced by: symgfixf1 19026 symgfixfo 19028 pwssplit1 20302 pwssplit2 20303 pwssplit3 20304 eulerpartgbij 32318 pwssplit4 40894 |
Copyright terms: Public domain | W3C validator |