Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvtresfn | Structured version Visualization version GIF version |
Description: Functionality of a tuple-restriction function. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fvtresfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
Ref | Expression |
---|---|
fvtresfn | ⊢ (𝑋 ∈ 𝐵 → (𝐹‘𝑋) = (𝑋 ↾ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 5949 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ↾ 𝑉) ∈ V) | |
2 | reseq1 5897 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ↾ 𝑉) = (𝑋 ↾ 𝑉)) | |
3 | fvtresfn.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) | |
4 | 2, 3 | fvmptg 6905 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑋 ↾ 𝑉) ∈ V) → (𝐹‘𝑋) = (𝑋 ↾ 𝑉)) |
5 | 1, 4 | mpdan 685 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝐹‘𝑋) = (𝑋 ↾ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ↦ cmpt 5164 ↾ cres 5602 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-res 5612 df-iota 6410 df-fun 6460 df-fv 6466 |
This theorem is referenced by: symgfixf1 19094 symgfixfo 19096 pwssplit1 20370 pwssplit2 20371 pwssplit3 20372 eulerpartgbij 32388 pwssplit4 41110 |
Copyright terms: Public domain | W3C validator |