MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtresfn Structured version   Visualization version   GIF version

Theorem fvtresfn 6952
Description: Functionality of a tuple-restriction function. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fvtresfn.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
fvtresfn (𝑋𝐵 → (𝐹𝑋) = (𝑋𝑉))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fvtresfn
StepHypRef Expression
1 resexg 5987 . 2 (𝑋𝐵 → (𝑋𝑉) ∈ V)
2 reseq1 5933 . . 3 (𝑥 = 𝑋 → (𝑥𝑉) = (𝑋𝑉))
3 fvtresfn.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
42, 3fvmptg 6948 . 2 ((𝑋𝐵 ∧ (𝑋𝑉) ∈ V) → (𝐹𝑋) = (𝑋𝑉))
51, 4mpdan 687 1 (𝑋𝐵 → (𝐹𝑋) = (𝑋𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183  cres 5633  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507
This theorem is referenced by:  symgfixf1  19351  symgfixfo  19353  pwssplit1  20998  pwssplit2  20999  pwssplit3  21000  eulerpartgbij  34356  pwssplit4  43071
  Copyright terms: Public domain W3C validator