HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhshsslem1 Structured version   Visualization version   GIF version

Theorem hhshsslem1 31211
Description: Lemma for hhsssh 31213. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssp3.3 𝑊 ∈ (SubSp‘𝑈)
hhssp3.4 𝐻 ⊆ ℋ
Assertion
Ref Expression
hhshsslem1 𝐻 = (BaseSet‘𝑊)

Proof of Theorem hhshsslem1
StepHypRef Expression
1 eqid 2729 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
2 eqid 2729 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
31, 2bafval 30548 . . 3 (BaseSet‘𝑊) = ran ( +𝑣𝑊)
4 hhsst.1 . . . . . . 7 𝑈 = ⟨⟨ + , · ⟩, norm
54hhnv 31109 . . . . . 6 𝑈 ∈ NrmCVec
6 hhssp3.3 . . . . . 6 𝑊 ∈ (SubSp‘𝑈)
7 eqid 2729 . . . . . . 7 (SubSp‘𝑈) = (SubSp‘𝑈)
87sspnv 30670 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
95, 6, 8mp2an 692 . . . . 5 𝑊 ∈ NrmCVec
102nvgrp 30561 . . . . 5 (𝑊 ∈ NrmCVec → ( +𝑣𝑊) ∈ GrpOp)
11 grporndm 30454 . . . . 5 (( +𝑣𝑊) ∈ GrpOp → ran ( +𝑣𝑊) = dom dom ( +𝑣𝑊))
129, 10, 11mp2b 10 . . . 4 ran ( +𝑣𝑊) = dom dom ( +𝑣𝑊)
13 hhsst.2 . . . . . . . . . 10 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
1413fveq2i 6825 . . . . . . . . 9 ( +𝑣𝑊) = ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
15 eqid 2729 . . . . . . . . . . 11 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
1615vafval 30547 . . . . . . . . . 10 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩))
17 opex 5407 . . . . . . . . . . . . 13 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ V
18 normf 31067 . . . . . . . . . . . . . . 15 norm: ℋ⟶ℝ
19 ax-hilex 30943 . . . . . . . . . . . . . . 15 ℋ ∈ V
20 fex 7162 . . . . . . . . . . . . . . 15 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
2118, 19, 20mp2an 692 . . . . . . . . . . . . . 14 norm ∈ V
2221resex 5980 . . . . . . . . . . . . 13 (norm𝐻) ∈ V
2317, 22op1st 7932 . . . . . . . . . . . 12 (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
2423fveq2i 6825 . . . . . . . . . . 11 (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)) = (1st ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩)
25 hilablo 31104 . . . . . . . . . . . . 13 + ∈ AbelOp
26 resexg 5978 . . . . . . . . . . . . 13 ( + ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ V)
2725, 26ax-mp 5 . . . . . . . . . . . 12 ( + ↾ (𝐻 × 𝐻)) ∈ V
28 hvmulex 30955 . . . . . . . . . . . . 13 · ∈ V
2928resex 5980 . . . . . . . . . . . 12 ( · ↾ (ℂ × 𝐻)) ∈ V
3027, 29op1st 7932 . . . . . . . . . . 11 (1st ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩) = ( + ↾ (𝐻 × 𝐻))
3124, 30eqtri 2752 . . . . . . . . . 10 (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)) = ( + ↾ (𝐻 × 𝐻))
3216, 31eqtri 2752 . . . . . . . . 9 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ( + ↾ (𝐻 × 𝐻))
3314, 32eqtri 2752 . . . . . . . 8 ( +𝑣𝑊) = ( + ↾ (𝐻 × 𝐻))
3433dmeqi 5847 . . . . . . 7 dom ( +𝑣𝑊) = dom ( + ↾ (𝐻 × 𝐻))
35 hhssp3.4 . . . . . . . . . 10 𝐻 ⊆ ℋ
36 xpss12 5634 . . . . . . . . . 10 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
3735, 35, 36mp2an 692 . . . . . . . . 9 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
38 ax-hfvadd 30944 . . . . . . . . . 10 + :( ℋ × ℋ)⟶ ℋ
3938fdmi 6663 . . . . . . . . 9 dom + = ( ℋ × ℋ)
4037, 39sseqtrri 3985 . . . . . . . 8 (𝐻 × 𝐻) ⊆ dom +
41 ssdmres 5964 . . . . . . . 8 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
4240, 41mpbi 230 . . . . . . 7 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
4334, 42eqtri 2752 . . . . . 6 dom ( +𝑣𝑊) = (𝐻 × 𝐻)
4443dmeqi 5847 . . . . 5 dom dom ( +𝑣𝑊) = dom (𝐻 × 𝐻)
45 dmxpid 5872 . . . . 5 dom (𝐻 × 𝐻) = 𝐻
4644, 45eqtri 2752 . . . 4 dom dom ( +𝑣𝑊) = 𝐻
4712, 46eqtri 2752 . . 3 ran ( +𝑣𝑊) = 𝐻
483, 47eqtri 2752 . 2 (BaseSet‘𝑊) = 𝐻
4948eqcomi 2738 1 𝐻 = (BaseSet‘𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  cop 4583   × cxp 5617  dom cdm 5619  ran crn 5620  cres 5621  wf 6478  cfv 6482  1st c1st 7922  cc 11007  cr 11008  GrpOpcgr 30433  AbelOpcablo 30488  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530  SubSpcss 30665  chba 30863   + cva 30864   · csm 30865  normcno 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30437  df-gid 30438  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544  df-ssp 30666  df-hnorm 30912  df-hvsub 30915
This theorem is referenced by:  hhshsslem2  31212  hhssba  31215
  Copyright terms: Public domain W3C validator