HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhshsslem1 Structured version   Visualization version   GIF version

Theorem hhshsslem1 29053
Description: Lemma for hhsssh 29055. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssp3.3 𝑊 ∈ (SubSp‘𝑈)
hhssp3.4 𝐻 ⊆ ℋ
Assertion
Ref Expression
hhshsslem1 𝐻 = (BaseSet‘𝑊)

Proof of Theorem hhshsslem1
StepHypRef Expression
1 eqid 2824 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
2 eqid 2824 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
31, 2bafval 28390 . . 3 (BaseSet‘𝑊) = ran ( +𝑣𝑊)
4 hhsst.1 . . . . . . 7 𝑈 = ⟨⟨ + , · ⟩, norm
54hhnv 28951 . . . . . 6 𝑈 ∈ NrmCVec
6 hhssp3.3 . . . . . 6 𝑊 ∈ (SubSp‘𝑈)
7 eqid 2824 . . . . . . 7 (SubSp‘𝑈) = (SubSp‘𝑈)
87sspnv 28512 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
95, 6, 8mp2an 691 . . . . 5 𝑊 ∈ NrmCVec
102nvgrp 28403 . . . . 5 (𝑊 ∈ NrmCVec → ( +𝑣𝑊) ∈ GrpOp)
11 grporndm 28296 . . . . 5 (( +𝑣𝑊) ∈ GrpOp → ran ( +𝑣𝑊) = dom dom ( +𝑣𝑊))
129, 10, 11mp2b 10 . . . 4 ran ( +𝑣𝑊) = dom dom ( +𝑣𝑊)
13 hhsst.2 . . . . . . . . . 10 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
1413fveq2i 6664 . . . . . . . . 9 ( +𝑣𝑊) = ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
15 eqid 2824 . . . . . . . . . . 11 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
1615vafval 28389 . . . . . . . . . 10 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩))
17 opex 5343 . . . . . . . . . . . . 13 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ V
18 normf 28909 . . . . . . . . . . . . . . 15 norm: ℋ⟶ℝ
19 ax-hilex 28785 . . . . . . . . . . . . . . 15 ℋ ∈ V
20 fex 6980 . . . . . . . . . . . . . . 15 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
2118, 19, 20mp2an 691 . . . . . . . . . . . . . 14 norm ∈ V
2221resex 5886 . . . . . . . . . . . . 13 (norm𝐻) ∈ V
2317, 22op1st 7692 . . . . . . . . . . . 12 (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
2423fveq2i 6664 . . . . . . . . . . 11 (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)) = (1st ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩)
25 hilablo 28946 . . . . . . . . . . . . 13 + ∈ AbelOp
26 resexg 5885 . . . . . . . . . . . . 13 ( + ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ V)
2725, 26ax-mp 5 . . . . . . . . . . . 12 ( + ↾ (𝐻 × 𝐻)) ∈ V
28 hvmulex 28797 . . . . . . . . . . . . 13 · ∈ V
2928resex 5886 . . . . . . . . . . . 12 ( · ↾ (ℂ × 𝐻)) ∈ V
3027, 29op1st 7692 . . . . . . . . . . 11 (1st ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩) = ( + ↾ (𝐻 × 𝐻))
3124, 30eqtri 2847 . . . . . . . . . 10 (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)) = ( + ↾ (𝐻 × 𝐻))
3216, 31eqtri 2847 . . . . . . . . 9 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ( + ↾ (𝐻 × 𝐻))
3314, 32eqtri 2847 . . . . . . . 8 ( +𝑣𝑊) = ( + ↾ (𝐻 × 𝐻))
3433dmeqi 5760 . . . . . . 7 dom ( +𝑣𝑊) = dom ( + ↾ (𝐻 × 𝐻))
35 hhssp3.4 . . . . . . . . . 10 𝐻 ⊆ ℋ
36 xpss12 5557 . . . . . . . . . 10 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
3735, 35, 36mp2an 691 . . . . . . . . 9 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
38 ax-hfvadd 28786 . . . . . . . . . 10 + :( ℋ × ℋ)⟶ ℋ
3938fdmi 6514 . . . . . . . . 9 dom + = ( ℋ × ℋ)
4037, 39sseqtrri 3990 . . . . . . . 8 (𝐻 × 𝐻) ⊆ dom +
41 ssdmres 5863 . . . . . . . 8 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
4240, 41mpbi 233 . . . . . . 7 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
4334, 42eqtri 2847 . . . . . 6 dom ( +𝑣𝑊) = (𝐻 × 𝐻)
4443dmeqi 5760 . . . . 5 dom dom ( +𝑣𝑊) = dom (𝐻 × 𝐻)
45 dmxpid 5787 . . . . 5 dom (𝐻 × 𝐻) = 𝐻
4644, 45eqtri 2847 . . . 4 dom dom ( +𝑣𝑊) = 𝐻
4712, 46eqtri 2847 . . 3 ran ( +𝑣𝑊) = 𝐻
483, 47eqtri 2847 . 2 (BaseSet‘𝑊) = 𝐻
4948eqcomi 2833 1 𝐻 = (BaseSet‘𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  Vcvv 3480  wss 3919  cop 4556   × cxp 5540  dom cdm 5542  ran crn 5543  cres 5544  wf 6339  cfv 6343  1st c1st 7682  cc 10533  cr 10534  GrpOpcgr 28275  AbelOpcablo 28330  NrmCVeccnv 28370   +𝑣 cpv 28371  BaseSetcba 28372  SubSpcss 28507  chba 28705   + cva 28706   · csm 28707  normcno 28709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-hilex 28785  ax-hfvadd 28786  ax-hvcom 28787  ax-hvass 28788  ax-hv0cl 28789  ax-hvaddid 28790  ax-hfvmul 28791  ax-hvmulid 28792  ax-hvmulass 28793  ax-hvdistr1 28794  ax-hvdistr2 28795  ax-hvmul0 28796  ax-hfi 28865  ax-his1 28868  ax-his2 28869  ax-his3 28870  ax-his4 28871
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-grpo 28279  df-gid 28280  df-ablo 28331  df-vc 28345  df-nv 28378  df-va 28381  df-ba 28382  df-sm 28383  df-0v 28384  df-nmcv 28386  df-ssp 28508  df-hnorm 28754  df-hvsub 28757
This theorem is referenced by:  hhshsslem2  29054  hhssba  29057
  Copyright terms: Public domain W3C validator