HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhshsslem1 Structured version   Visualization version   GIF version

Theorem hhshsslem1 28680
Description: Lemma for hhsssh 28682. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssp3.3 𝑊 ∈ (SubSp‘𝑈)
hhssp3.4 𝐻 ⊆ ℋ
Assertion
Ref Expression
hhshsslem1 𝐻 = (BaseSet‘𝑊)

Proof of Theorem hhshsslem1
StepHypRef Expression
1 eqid 2826 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
2 eqid 2826 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
31, 2bafval 28015 . . 3 (BaseSet‘𝑊) = ran ( +𝑣𝑊)
4 hhsst.1 . . . . . . 7 𝑈 = ⟨⟨ + , · ⟩, norm
54hhnv 28578 . . . . . 6 𝑈 ∈ NrmCVec
6 hhssp3.3 . . . . . 6 𝑊 ∈ (SubSp‘𝑈)
7 eqid 2826 . . . . . . 7 (SubSp‘𝑈) = (SubSp‘𝑈)
87sspnv 28137 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
95, 6, 8mp2an 685 . . . . 5 𝑊 ∈ NrmCVec
102nvgrp 28028 . . . . 5 (𝑊 ∈ NrmCVec → ( +𝑣𝑊) ∈ GrpOp)
11 grporndm 27921 . . . . 5 (( +𝑣𝑊) ∈ GrpOp → ran ( +𝑣𝑊) = dom dom ( +𝑣𝑊))
129, 10, 11mp2b 10 . . . 4 ran ( +𝑣𝑊) = dom dom ( +𝑣𝑊)
13 hhsst.2 . . . . . . . . . 10 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
1413fveq2i 6437 . . . . . . . . 9 ( +𝑣𝑊) = ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
15 eqid 2826 . . . . . . . . . . 11 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
1615vafval 28014 . . . . . . . . . 10 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩))
17 opex 5154 . . . . . . . . . . . . 13 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ V
18 normf 28536 . . . . . . . . . . . . . . 15 norm: ℋ⟶ℝ
19 ax-hilex 28412 . . . . . . . . . . . . . . 15 ℋ ∈ V
20 fex 6746 . . . . . . . . . . . . . . 15 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
2118, 19, 20mp2an 685 . . . . . . . . . . . . . 14 norm ∈ V
2221resex 5681 . . . . . . . . . . . . 13 (norm𝐻) ∈ V
2317, 22op1st 7437 . . . . . . . . . . . 12 (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
2423fveq2i 6437 . . . . . . . . . . 11 (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)) = (1st ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩)
25 hilablo 28573 . . . . . . . . . . . . 13 + ∈ AbelOp
26 resexg 5680 . . . . . . . . . . . . 13 ( + ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ V)
2725, 26ax-mp 5 . . . . . . . . . . . 12 ( + ↾ (𝐻 × 𝐻)) ∈ V
28 hvmulex 28424 . . . . . . . . . . . . 13 · ∈ V
2928resex 5681 . . . . . . . . . . . 12 ( · ↾ (ℂ × 𝐻)) ∈ V
3027, 29op1st 7437 . . . . . . . . . . 11 (1st ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩) = ( + ↾ (𝐻 × 𝐻))
3124, 30eqtri 2850 . . . . . . . . . 10 (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)) = ( + ↾ (𝐻 × 𝐻))
3216, 31eqtri 2850 . . . . . . . . 9 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ( + ↾ (𝐻 × 𝐻))
3314, 32eqtri 2850 . . . . . . . 8 ( +𝑣𝑊) = ( + ↾ (𝐻 × 𝐻))
3433dmeqi 5558 . . . . . . 7 dom ( +𝑣𝑊) = dom ( + ↾ (𝐻 × 𝐻))
35 hhssp3.4 . . . . . . . . . 10 𝐻 ⊆ ℋ
36 xpss12 5358 . . . . . . . . . 10 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
3735, 35, 36mp2an 685 . . . . . . . . 9 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
38 ax-hfvadd 28413 . . . . . . . . . 10 + :( ℋ × ℋ)⟶ ℋ
3938fdmi 6289 . . . . . . . . 9 dom + = ( ℋ × ℋ)
4037, 39sseqtr4i 3864 . . . . . . . 8 (𝐻 × 𝐻) ⊆ dom +
41 ssdmres 5657 . . . . . . . 8 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
4240, 41mpbi 222 . . . . . . 7 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
4334, 42eqtri 2850 . . . . . 6 dom ( +𝑣𝑊) = (𝐻 × 𝐻)
4443dmeqi 5558 . . . . 5 dom dom ( +𝑣𝑊) = dom (𝐻 × 𝐻)
45 dmxpid 5578 . . . . 5 dom (𝐻 × 𝐻) = 𝐻
4644, 45eqtri 2850 . . . 4 dom dom ( +𝑣𝑊) = 𝐻
4712, 46eqtri 2850 . . 3 ran ( +𝑣𝑊) = 𝐻
483, 47eqtri 2850 . 2 (BaseSet‘𝑊) = 𝐻
4948eqcomi 2835 1 𝐻 = (BaseSet‘𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  Vcvv 3415  wss 3799  cop 4404   × cxp 5341  dom cdm 5343  ran crn 5344  cres 5345  wf 6120  cfv 6124  1st c1st 7427  cc 10251  cr 10252  GrpOpcgr 27900  AbelOpcablo 27955  NrmCVeccnv 27995   +𝑣 cpv 27996  BaseSetcba 27997  SubSpcss 28132  chba 28332   + cva 28333   · csm 28334  normcno 28336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-hilex 28412  ax-hfvadd 28413  ax-hvcom 28414  ax-hvass 28415  ax-hv0cl 28416  ax-hvaddid 28417  ax-hfvmul 28418  ax-hvmulid 28419  ax-hvmulass 28420  ax-hvdistr1 28421  ax-hvdistr2 28422  ax-hvmul0 28423  ax-hfi 28492  ax-his1 28495  ax-his2 28496  ax-his3 28497  ax-his4 28498
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-sup 8618  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-n0 11620  df-z 11706  df-uz 11970  df-rp 12114  df-seq 13097  df-exp 13156  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-grpo 27904  df-gid 27905  df-ablo 27956  df-vc 27970  df-nv 28003  df-va 28006  df-ba 28007  df-sm 28008  df-0v 28009  df-nmcv 28011  df-ssp 28133  df-hnorm 28381  df-hvsub 28384
This theorem is referenced by:  hhshsslem2  28681  hhssba  28684
  Copyright terms: Public domain W3C validator