HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhshsslem1 Structured version   Visualization version   GIF version

Theorem hhshsslem1 31286
Description: Lemma for hhsssh 31288. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssp3.3 𝑊 ∈ (SubSp‘𝑈)
hhssp3.4 𝐻 ⊆ ℋ
Assertion
Ref Expression
hhshsslem1 𝐻 = (BaseSet‘𝑊)

Proof of Theorem hhshsslem1
StepHypRef Expression
1 eqid 2737 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
2 eqid 2737 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
31, 2bafval 30623 . . 3 (BaseSet‘𝑊) = ran ( +𝑣𝑊)
4 hhsst.1 . . . . . . 7 𝑈 = ⟨⟨ + , · ⟩, norm
54hhnv 31184 . . . . . 6 𝑈 ∈ NrmCVec
6 hhssp3.3 . . . . . 6 𝑊 ∈ (SubSp‘𝑈)
7 eqid 2737 . . . . . . 7 (SubSp‘𝑈) = (SubSp‘𝑈)
87sspnv 30745 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
95, 6, 8mp2an 692 . . . . 5 𝑊 ∈ NrmCVec
102nvgrp 30636 . . . . 5 (𝑊 ∈ NrmCVec → ( +𝑣𝑊) ∈ GrpOp)
11 grporndm 30529 . . . . 5 (( +𝑣𝑊) ∈ GrpOp → ran ( +𝑣𝑊) = dom dom ( +𝑣𝑊))
129, 10, 11mp2b 10 . . . 4 ran ( +𝑣𝑊) = dom dom ( +𝑣𝑊)
13 hhsst.2 . . . . . . . . . 10 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
1413fveq2i 6909 . . . . . . . . 9 ( +𝑣𝑊) = ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
15 eqid 2737 . . . . . . . . . . 11 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
1615vafval 30622 . . . . . . . . . 10 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩))
17 opex 5469 . . . . . . . . . . . . 13 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ V
18 normf 31142 . . . . . . . . . . . . . . 15 norm: ℋ⟶ℝ
19 ax-hilex 31018 . . . . . . . . . . . . . . 15 ℋ ∈ V
20 fex 7246 . . . . . . . . . . . . . . 15 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
2118, 19, 20mp2an 692 . . . . . . . . . . . . . 14 norm ∈ V
2221resex 6047 . . . . . . . . . . . . 13 (norm𝐻) ∈ V
2317, 22op1st 8022 . . . . . . . . . . . 12 (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
2423fveq2i 6909 . . . . . . . . . . 11 (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)) = (1st ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩)
25 hilablo 31179 . . . . . . . . . . . . 13 + ∈ AbelOp
26 resexg 6045 . . . . . . . . . . . . 13 ( + ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ V)
2725, 26ax-mp 5 . . . . . . . . . . . 12 ( + ↾ (𝐻 × 𝐻)) ∈ V
28 hvmulex 31030 . . . . . . . . . . . . 13 · ∈ V
2928resex 6047 . . . . . . . . . . . 12 ( · ↾ (ℂ × 𝐻)) ∈ V
3027, 29op1st 8022 . . . . . . . . . . 11 (1st ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩) = ( + ↾ (𝐻 × 𝐻))
3124, 30eqtri 2765 . . . . . . . . . 10 (1st ‘(1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)) = ( + ↾ (𝐻 × 𝐻))
3216, 31eqtri 2765 . . . . . . . . 9 ( +𝑣 ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ( + ↾ (𝐻 × 𝐻))
3314, 32eqtri 2765 . . . . . . . 8 ( +𝑣𝑊) = ( + ↾ (𝐻 × 𝐻))
3433dmeqi 5915 . . . . . . 7 dom ( +𝑣𝑊) = dom ( + ↾ (𝐻 × 𝐻))
35 hhssp3.4 . . . . . . . . . 10 𝐻 ⊆ ℋ
36 xpss12 5700 . . . . . . . . . 10 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
3735, 35, 36mp2an 692 . . . . . . . . 9 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
38 ax-hfvadd 31019 . . . . . . . . . 10 + :( ℋ × ℋ)⟶ ℋ
3938fdmi 6747 . . . . . . . . 9 dom + = ( ℋ × ℋ)
4037, 39sseqtrri 4033 . . . . . . . 8 (𝐻 × 𝐻) ⊆ dom +
41 ssdmres 6031 . . . . . . . 8 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
4240, 41mpbi 230 . . . . . . 7 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
4334, 42eqtri 2765 . . . . . 6 dom ( +𝑣𝑊) = (𝐻 × 𝐻)
4443dmeqi 5915 . . . . 5 dom dom ( +𝑣𝑊) = dom (𝐻 × 𝐻)
45 dmxpid 5941 . . . . 5 dom (𝐻 × 𝐻) = 𝐻
4644, 45eqtri 2765 . . . 4 dom dom ( +𝑣𝑊) = 𝐻
4712, 46eqtri 2765 . . 3 ran ( +𝑣𝑊) = 𝐻
483, 47eqtri 2765 . 2 (BaseSet‘𝑊) = 𝐻
4948eqcomi 2746 1 𝐻 = (BaseSet‘𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  cop 4632   × cxp 5683  dom cdm 5685  ran crn 5686  cres 5687  wf 6557  cfv 6561  1st c1st 8012  cc 11153  cr 11154  GrpOpcgr 30508  AbelOpcablo 30563  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605  SubSpcss 30740  chba 30938   + cva 30939   · csm 30940  normcno 30942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-grpo 30512  df-gid 30513  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619  df-ssp 30741  df-hnorm 30987  df-hvsub 30990
This theorem is referenced by:  hhshsslem2  31287  hhssba  31290
  Copyright terms: Public domain W3C validator