Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resixp | Structured version Visualization version GIF version |
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
resixp | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 5937 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 → (𝐹 ↾ 𝐵) ∈ V) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ V) |
3 | simpr 485 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) | |
4 | elixp2 8689 | . . . . 5 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) |
6 | 5 | simp2d 1142 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 Fn 𝐴) |
7 | simpl 483 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐵 ⊆ 𝐴) | |
8 | fnssres 6555 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) Fn 𝐵) |
10 | 5 | simp3d 1143 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶) |
11 | ssralv 3987 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶)) | |
12 | 7, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
13 | fvres 6793 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
14 | 13 | eleq1d 2823 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ (𝐹‘𝑥) ∈ 𝐶)) |
15 | 14 | ralbiia 3091 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
16 | 12, 15 | sylibr 233 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶) |
17 | elixp2 8689 | . 2 ⊢ ((𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶 ↔ ((𝐹 ↾ 𝐵) ∈ V ∧ (𝐹 ↾ 𝐵) Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶)) | |
18 | 2, 9, 16, 17 | syl3anbrc 1342 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ↾ cres 5591 Fn wfn 6428 ‘cfv 6433 Xcixp 8685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-ixp 8686 |
This theorem is referenced by: resixpfo 8724 ixpfi2 9117 ptrescn 22790 ptuncnv 22958 ptcmplem2 23204 |
Copyright terms: Public domain | W3C validator |