| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resixp | Structured version Visualization version GIF version | ||
| Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| resixp | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg 5998 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 → (𝐹 ↾ 𝐵) ∈ V) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ V) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) | |
| 4 | elixp2 8874 | . . . . 5 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) |
| 6 | 5 | simp2d 1143 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 Fn 𝐴) |
| 7 | simpl 482 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐵 ⊆ 𝐴) | |
| 8 | fnssres 6641 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
| 9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| 10 | 5 | simp3d 1144 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶) |
| 11 | ssralv 4015 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶)) | |
| 12 | 7, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
| 13 | fvres 6877 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
| 14 | 13 | eleq1d 2813 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ (𝐹‘𝑥) ∈ 𝐶)) |
| 15 | 14 | ralbiia 3073 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
| 16 | 12, 15 | sylibr 234 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶) |
| 17 | elixp2 8874 | . 2 ⊢ ((𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶 ↔ ((𝐹 ↾ 𝐵) ∈ V ∧ (𝐹 ↾ 𝐵) Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶)) | |
| 18 | 2, 9, 16, 17 | syl3anbrc 1344 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 ↾ cres 5640 Fn wfn 6506 ‘cfv 6511 Xcixp 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ixp 8871 |
| This theorem is referenced by: resixpfo 8909 ixpfi2 9301 ptrescn 23526 ptuncnv 23694 ptcmplem2 23940 |
| Copyright terms: Public domain | W3C validator |