![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resixp | Structured version Visualization version GIF version |
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
resixp | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 6027 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 → (𝐹 ↾ 𝐵) ∈ V) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ V) |
3 | simpr 484 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) | |
4 | elixp2 8898 | . . . . 5 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) |
6 | 5 | simp2d 1142 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 Fn 𝐴) |
7 | simpl 482 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐵 ⊆ 𝐴) | |
8 | fnssres 6673 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
9 | 6, 7, 8 | syl2anc 583 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) Fn 𝐵) |
10 | 5 | simp3d 1143 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶) |
11 | ssralv 4050 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶)) | |
12 | 7, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
13 | fvres 6910 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
14 | 13 | eleq1d 2817 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ (𝐹‘𝑥) ∈ 𝐶)) |
15 | 14 | ralbiia 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
16 | 12, 15 | sylibr 233 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶) |
17 | elixp2 8898 | . 2 ⊢ ((𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶 ↔ ((𝐹 ↾ 𝐵) ∈ V ∧ (𝐹 ↾ 𝐵) Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶)) | |
18 | 2, 9, 16, 17 | syl3anbrc 1342 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ⊆ wss 3948 ↾ cres 5678 Fn wfn 6538 ‘cfv 6543 Xcixp 8894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ixp 8895 |
This theorem is referenced by: resixpfo 8933 ixpfi2 9353 ptrescn 23364 ptuncnv 23532 ptcmplem2 23778 |
Copyright terms: Public domain | W3C validator |