MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resixp Structured version   Visualization version   GIF version

Theorem resixp 8867
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
resixp ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resixp
StepHypRef Expression
1 resexg 5982 . . 3 (𝐹X𝑥𝐴 𝐶 → (𝐹𝐵) ∈ V)
21adantl 481 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ V)
3 simpr 484 . . . . 5 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐹X𝑥𝐴 𝐶)
4 elixp2 8835 . . . . 5 (𝐹X𝑥𝐴 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶))
53, 4sylib 218 . . . 4 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶))
65simp2d 1143 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐹 Fn 𝐴)
7 simpl 482 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐵𝐴)
8 fnssres 6609 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
96, 7, 8syl2anc 584 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) Fn 𝐵)
105simp3d 1144 . . . 4 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶)
11 ssralv 4006 . . . 4 (𝐵𝐴 → (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶 → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶))
127, 10, 11sylc 65 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
13 fvres 6845 . . . . 5 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
1413eleq1d 2813 . . . 4 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) ∈ 𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
1514ralbiia 3073 . . 3 (∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
1612, 15sylibr 234 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶)
17 elixp2 8835 . 2 ((𝐹𝐵) ∈ X𝑥𝐵 𝐶 ↔ ((𝐹𝐵) ∈ V ∧ (𝐹𝐵) Fn 𝐵 ∧ ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶))
182, 9, 16, 17syl3anbrc 1344 1 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3044  Vcvv 3438  wss 3905  cres 5625   Fn wfn 6481  cfv 6486  Xcixp 8831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-ixp 8832
This theorem is referenced by:  resixpfo  8870  ixpfi2  9259  ptrescn  23542  ptuncnv  23710  ptcmplem2  23956
  Copyright terms: Public domain W3C validator