![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resixp | Structured version Visualization version GIF version |
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
resixp | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 6032 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 → (𝐹 ↾ 𝐵) ∈ V) | |
2 | 1 | adantl 480 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ V) |
3 | simpr 483 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) | |
4 | elixp2 8920 | . . . . 5 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) |
6 | 5 | simp2d 1140 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 Fn 𝐴) |
7 | simpl 481 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐵 ⊆ 𝐴) | |
8 | fnssres 6679 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
9 | 6, 7, 8 | syl2anc 582 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) Fn 𝐵) |
10 | 5 | simp3d 1141 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶) |
11 | ssralv 4045 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶)) | |
12 | 7, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
13 | fvres 6915 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
14 | 13 | eleq1d 2810 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ (𝐹‘𝑥) ∈ 𝐶)) |
15 | 14 | ralbiia 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
16 | 12, 15 | sylibr 233 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶) |
17 | elixp2 8920 | . 2 ⊢ ((𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶 ↔ ((𝐹 ↾ 𝐵) ∈ V ∧ (𝐹 ↾ 𝐵) Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶)) | |
18 | 2, 9, 16, 17 | syl3anbrc 1340 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 ∀wral 3050 Vcvv 3461 ⊆ wss 3944 ↾ cres 5680 Fn wfn 6544 ‘cfv 6549 Xcixp 8916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-res 5690 df-iota 6501 df-fun 6551 df-fn 6552 df-fv 6557 df-ixp 8917 |
This theorem is referenced by: resixpfo 8955 ixpfi2 9376 ptrescn 23587 ptuncnv 23755 ptcmplem2 24001 |
Copyright terms: Public domain | W3C validator |