Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhssva | Structured version Visualization version GIF version |
Description: The vector addition operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhss.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
Ref | Expression |
---|---|
hhssva | ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) = ( +𝑣 ‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
2 | 1 | vafval 28866 | . 2 ⊢ ( +𝑣 ‘𝑊) = (1st ‘(1st ‘𝑊)) |
3 | hhss.1 | . . . . 5 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
4 | 3 | fveq2i 6759 | . . . 4 ⊢ (1st ‘𝑊) = (1st ‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) |
5 | opex 5373 | . . . . 5 ⊢ 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 ∈ V | |
6 | normf 29386 | . . . . . . 7 ⊢ normℎ: ℋ⟶ℝ | |
7 | ax-hilex 29262 | . . . . . . 7 ⊢ ℋ ∈ V | |
8 | fex 7084 | . . . . . . 7 ⊢ ((normℎ: ℋ⟶ℝ ∧ ℋ ∈ V) → normℎ ∈ V) | |
9 | 6, 7, 8 | mp2an 688 | . . . . . 6 ⊢ normℎ ∈ V |
10 | 9 | resex 5928 | . . . . 5 ⊢ (normℎ ↾ 𝐻) ∈ V |
11 | 5, 10 | op1st 7812 | . . . 4 ⊢ (1st ‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) = 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 |
12 | 4, 11 | eqtri 2766 | . . 3 ⊢ (1st ‘𝑊) = 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 |
13 | 12 | fveq2i 6759 | . 2 ⊢ (1st ‘(1st ‘𝑊)) = (1st ‘〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉) |
14 | hilablo 29423 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
15 | resexg 5926 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ V) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ V |
17 | hvmulex 29274 | . . . 4 ⊢ ·ℎ ∈ V | |
18 | 17 | resex 5928 | . . 3 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) ∈ V |
19 | 16, 18 | op1st 7812 | . 2 ⊢ (1st ‘〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉) = ( +ℎ ↾ (𝐻 × 𝐻)) |
20 | 2, 13, 19 | 3eqtrri 2771 | 1 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) = ( +𝑣 ‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 × cxp 5578 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 1st c1st 7802 ℂcc 10800 ℝcr 10801 AbelOpcablo 28807 +𝑣 cpv 28848 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 normℎcno 29186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-grpo 28756 df-ablo 28808 df-va 28858 df-hnorm 29231 df-hvsub 29234 |
This theorem is referenced by: hhsst 29529 hhsssh2 29533 |
Copyright terms: Public domain | W3C validator |