Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgfixels | Structured version Visualization version GIF version |
Description: The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019.) |
Ref | Expression |
---|---|
symgfixf.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
symgfixf.q | ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} |
symgfixf.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgfixf.d | ⊢ 𝐷 = (𝑁 ∖ {𝐾}) |
Ref | Expression |
---|---|
symgfixels | ⊢ (𝐹 ∈ 𝑉 → ((𝐹 ↾ 𝐷) ∈ 𝑆 ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgfixf.s | . . . 4 ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ ((𝐹 ↾ 𝐷) ∈ 𝑆 ↔ (𝐹 ↾ 𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) |
3 | 2 | a1i 11 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((𝐹 ↾ 𝐷) ∈ 𝑆 ↔ (𝐹 ↾ 𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))) |
4 | resexg 5911 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ 𝐷) ∈ V) | |
5 | eqid 2738 | . . . 4 ⊢ (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾})) | |
6 | eqid 2738 | . . . 4 ⊢ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
7 | 5, 6 | elsymgbas2 18789 | . . 3 ⊢ ((𝐹 ↾ 𝐷) ∈ V → ((𝐹 ↾ 𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↔ (𝐹 ↾ 𝐷):(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}))) |
8 | 4, 7 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((𝐹 ↾ 𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↔ (𝐹 ↾ 𝐷):(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}))) |
9 | eqidd 2739 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ 𝐷) = (𝐹 ↾ 𝐷)) | |
10 | symgfixf.d | . . . . 5 ⊢ 𝐷 = (𝑁 ∖ {𝐾}) | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐷 = (𝑁 ∖ {𝐾})) |
12 | 11 | eqcomd 2744 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑁 ∖ {𝐾}) = 𝐷) |
13 | 9, 12, 12 | f1oeq123d 6673 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((𝐹 ↾ 𝐷):(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷)) |
14 | 3, 8, 13 | 3bitrd 308 | 1 ⊢ (𝐹 ∈ 𝑉 → ((𝐹 ↾ 𝐷) ∈ 𝑆 ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2111 {crab 3066 Vcvv 3420 ∖ cdif 3877 {csn 4555 ↾ cres 5567 –1-1-onto→wf1o 6396 ‘cfv 6397 Basecbs 16784 SymGrpcsymg 18783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-map 8530 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-7 11922 df-8 11923 df-9 11924 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-struct 16724 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-ress 16809 df-plusg 16839 df-tset 16845 df-efmnd 18320 df-symg 18784 |
This theorem is referenced by: symgfixelsi 18851 |
Copyright terms: Public domain | W3C validator |