MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixels Structured version   Visualization version   GIF version

Theorem symgfixels 19396
Description: The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.d 𝐷 = (𝑁 ∖ {𝐾})
Assertion
Ref Expression
symgfixels (𝐹𝑉 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞
Allowed substitution hints:   𝐷(𝑞)   𝑄(𝑞)   𝑆(𝑞)   𝐹(𝑞)   𝑁(𝑞)   𝑉(𝑞)

Proof of Theorem symgfixels
StepHypRef Expression
1 symgfixf.s . . . 4 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
21eleq2i 2821 . . 3 ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
32a1i 11 . 2 (𝐹𝑉 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))))
4 resexg 6036 . . 3 (𝐹𝑉 → (𝐹𝐷) ∈ V)
5 eqid 2728 . . . 4 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
6 eqid 2728 . . . 4 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
75, 6elsymgbas2 19334 . . 3 ((𝐹𝐷) ∈ V → ((𝐹𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↔ (𝐹𝐷):(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾})))
84, 7syl 17 . 2 (𝐹𝑉 → ((𝐹𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↔ (𝐹𝐷):(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾})))
9 eqidd 2729 . . 3 (𝐹𝑉 → (𝐹𝐷) = (𝐹𝐷))
10 symgfixf.d . . . . 5 𝐷 = (𝑁 ∖ {𝐾})
1110a1i 11 . . . 4 (𝐹𝑉𝐷 = (𝑁 ∖ {𝐾}))
1211eqcomd 2734 . . 3 (𝐹𝑉 → (𝑁 ∖ {𝐾}) = 𝐷)
139, 12, 12f1oeq123d 6838 . 2 (𝐹𝑉 → ((𝐹𝐷):(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
143, 8, 133bitrd 304 1 (𝐹𝑉 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  {crab 3430  Vcvv 3473  cdif 3946  {csn 4632  cres 5684  1-1-ontowf1o 6552  cfv 6553  Basecbs 17187  SymGrpcsymg 19328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-tset 17259  df-efmnd 18828  df-symg 19329
This theorem is referenced by:  symgfixelsi  19397
  Copyright terms: Public domain W3C validator