MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixels Structured version   Visualization version   GIF version

Theorem symgfixels 19419
Description: The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.d 𝐷 = (𝑁 ∖ {𝐾})
Assertion
Ref Expression
symgfixels (𝐹𝑉 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞
Allowed substitution hints:   𝐷(𝑞)   𝑄(𝑞)   𝑆(𝑞)   𝐹(𝑞)   𝑁(𝑞)   𝑉(𝑞)

Proof of Theorem symgfixels
StepHypRef Expression
1 symgfixf.s . . . 4 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
21eleq2i 2825 . . 3 ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
32a1i 11 . 2 (𝐹𝑉 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))))
4 resexg 6025 . . 3 (𝐹𝑉 → (𝐹𝐷) ∈ V)
5 eqid 2734 . . . 4 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
6 eqid 2734 . . . 4 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
75, 6elsymgbas2 19357 . . 3 ((𝐹𝐷) ∈ V → ((𝐹𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↔ (𝐹𝐷):(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾})))
84, 7syl 17 . 2 (𝐹𝑉 → ((𝐹𝐷) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↔ (𝐹𝐷):(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾})))
9 eqidd 2735 . . 3 (𝐹𝑉 → (𝐹𝐷) = (𝐹𝐷))
10 symgfixf.d . . . . 5 𝐷 = (𝑁 ∖ {𝐾})
1110a1i 11 . . . 4 (𝐹𝑉𝐷 = (𝑁 ∖ {𝐾}))
1211eqcomd 2740 . . 3 (𝐹𝑉 → (𝑁 ∖ {𝐾}) = 𝐷)
139, 12, 12f1oeq123d 6821 . 2 (𝐹𝑉 → ((𝐹𝐷):(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
143, 8, 133bitrd 305 1 (𝐹𝑉 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  {crab 3419  Vcvv 3463  cdif 3928  {csn 4606  cres 5667  1-1-ontowf1o 6539  cfv 6540  Basecbs 17228  SymGrpcsymg 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-z 12596  df-uz 12860  df-fz 13529  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-tset 17291  df-efmnd 18850  df-symg 19354
This theorem is referenced by:  symgfixelsi  19420
  Copyright terms: Public domain W3C validator