![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climres | Structured version Visualization version GIF version |
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climres | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . 2 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | resexg 6026 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ V) | |
3 | 2 | adantl 480 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ V) |
4 | simpr 483 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
5 | simpl 481 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝑀 ∈ ℤ) | |
6 | fvres 6909 | . . 3 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) = (𝐹‘𝑘)) | |
7 | 6 | adantl 480 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) = (𝐹‘𝑘)) |
8 | 1, 3, 4, 5, 7 | climeq 15515 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 class class class wbr 5147 ↾ cres 5677 ‘cfv 6542 ℤcz 12562 ℤ≥cuz 12826 ⇝ cli 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-neg 11451 df-z 12563 df-uz 12827 df-clim 15436 |
This theorem is referenced by: sumrb 15663 divcnvshft 15805 prodrblem2 15879 iscmet3lem3 25038 leibpilem2 26682 lgamcvg2 26795 divcnvlin 35006 radcnvrat 43375 hashnzfzclim 43383 climresmpt 44673 xlimclim2lem 44853 climxlim2 44860 climresd 44863 |
Copyright terms: Public domain | W3C validator |