| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climres | Structured version Visualization version GIF version | ||
| Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climres | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 2 | resexg 6019 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ V) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ V) |
| 4 | simpr 484 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
| 5 | simpl 482 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝑀 ∈ ℤ) | |
| 6 | fvres 6900 | . . 3 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) = (𝐹‘𝑘)) | |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) = (𝐹‘𝑘)) |
| 8 | 1, 3, 4, 5, 7 | climeq 15588 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 ↾ cres 5661 ‘cfv 6536 ℤcz 12593 ℤ≥cuz 12857 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-neg 11474 df-z 12594 df-uz 12858 df-clim 15509 |
| This theorem is referenced by: sumrb 15734 divcnvshft 15876 prodrblem2 15952 iscmet3lem3 25247 leibpilem2 26908 lgamcvg2 27022 divcnvlin 35755 radcnvrat 44305 hashnzfzclim 44313 climresmpt 45655 xlimclim2lem 45835 climxlim2 45842 climresd 45845 |
| Copyright terms: Public domain | W3C validator |