MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climres Structured version   Visualization version   GIF version

Theorem climres 14644
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climres ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 ↾ (ℤ𝑀)) ⇝ 𝐴𝐹𝐴))

Proof of Theorem climres
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . 2 (ℤ𝑀) = (ℤ𝑀)
2 resexg 5653 . . 3 (𝐹𝑉 → (𝐹 ↾ (ℤ𝑀)) ∈ V)
32adantl 474 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ↾ (ℤ𝑀)) ∈ V)
4 simpr 478 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
5 simpl 475 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝑀 ∈ ℤ)
6 fvres 6429 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
76adantl 474 . 2 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
81, 3, 4, 5, 7climeq 14636 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 ↾ (ℤ𝑀)) ⇝ 𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  Vcvv 3384   class class class wbr 4842  cres 5313  cfv 6100  cz 11663  cuz 11927  cli 14553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-pre-lttri 10297  ax-pre-lttrn 10298
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4628  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5219  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-ov 6880  df-er 7981  df-en 8195  df-dom 8196  df-sdom 8197  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-neg 10558  df-z 11664  df-uz 11928  df-clim 14557
This theorem is referenced by:  sumrb  14782  divcnvshft  14922  prodrblem2  14995  iscmet3lem3  23413  leibpilem2  25017  lgamcvg2  25130  divcnvlin  32125  radcnvrat  39284  hashnzfzclim  39292  climresmpt  40624  xlimclim2lem  40798  climxlim2  40805
  Copyright terms: Public domain W3C validator