![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climres | Structured version Visualization version GIF version |
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climres | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2798 | . 2 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | resexg 5653 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ V) | |
3 | 2 | adantl 474 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ V) |
4 | simpr 478 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
5 | simpl 475 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝑀 ∈ ℤ) | |
6 | fvres 6429 | . . 3 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) = (𝐹‘𝑘)) | |
7 | 6 | adantl 474 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) = (𝐹‘𝑘)) |
8 | 1, 3, 4, 5, 7 | climeq 14636 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3384 class class class wbr 4842 ↾ cres 5313 ‘cfv 6100 ℤcz 11663 ℤ≥cuz 11927 ⇝ cli 14553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-pre-lttri 10297 ax-pre-lttrn 10298 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-op 4374 df-uni 4628 df-br 4843 df-opab 4905 df-mpt 4922 df-id 5219 df-po 5232 df-so 5233 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-ov 6880 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-neg 10558 df-z 11664 df-uz 11928 df-clim 14557 |
This theorem is referenced by: sumrb 14782 divcnvshft 14922 prodrblem2 14995 iscmet3lem3 23413 leibpilem2 25017 lgamcvg2 25130 divcnvlin 32125 radcnvrat 39284 hashnzfzclim 39292 climresmpt 40624 xlimclim2lem 40798 climxlim2 40805 |
Copyright terms: Public domain | W3C validator |