MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofunexg Structured version   Visualization version   GIF version

Theorem cofunexg 7765
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 6137 . . 3 Rel (𝐴𝐵)
2 relssdmrn 6161 . . 3 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
31, 2ax-mp 5 . 2 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
4 dmcoss 5869 . . . . 5 dom (𝐴𝐵) ⊆ dom 𝐵
5 dmexg 7724 . . . . 5 (𝐵𝐶 → dom 𝐵 ∈ V)
6 ssexg 5242 . . . . 5 ((dom (𝐴𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴𝐵) ∈ V)
74, 5, 6sylancr 586 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
87adantl 481 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
9 rnco 6145 . . . 4 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
10 rnexg 7725 . . . . . 6 (𝐵𝐶 → ran 𝐵 ∈ V)
11 resfunexg 7073 . . . . . 6 ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V)
1210, 11sylan2 592 . . . . 5 ((Fun 𝐴𝐵𝐶) → (𝐴 ↾ ran 𝐵) ∈ V)
13 rnexg 7725 . . . . 5 ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V)
1412, 13syl 17 . . . 4 ((Fun 𝐴𝐵𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V)
159, 14eqeltrid 2843 . . 3 ((Fun 𝐴𝐵𝐶) → ran (𝐴𝐵) ∈ V)
168, 15xpexd 7579 . 2 ((Fun 𝐴𝐵𝐶) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
17 ssexg 5242 . 2 (((𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∧ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
183, 16, 17sylancr 586 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  wss 3883   × cxp 5578  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584  Rel wrel 5585  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  cofunex2g  7766  fin1a2lem7  10093  revco  14475  ccatco  14476  pfxco  14479  lswco  14480  isofval  17386  bcthlem4  24396  sseqval  32255  sinccvglem  33530
  Copyright terms: Public domain W3C validator