Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cofunexg | Structured version Visualization version GIF version |
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6148 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | relssdmrn 6172 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) |
4 | dmcoss 5880 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | dmexg 7750 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → dom 𝐵 ∈ V) | |
6 | ssexg 5247 | . . . . 5 ⊢ ((dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴 ∘ 𝐵) ∈ V) | |
7 | 4, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ∘ 𝐵) ∈ V) |
8 | 7 | adantl 482 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ∘ 𝐵) ∈ V) |
9 | rnco 6156 | . . . 4 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
10 | rnexg 7751 | . . . . . 6 ⊢ (𝐵 ∈ 𝐶 → ran 𝐵 ∈ V) | |
11 | resfunexg 7091 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V) | |
12 | 10, 11 | sylan2 593 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ ran 𝐵) ∈ V) |
13 | rnexg 7751 | . . . . 5 ⊢ ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V) |
15 | 9, 14 | eqeltrid 2843 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ∘ 𝐵) ∈ V) |
16 | 8, 15 | xpexd 7601 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) |
17 | ssexg 5247 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∧ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
18 | 3, 16, 17 | sylancr 587 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 × cxp 5587 dom cdm 5589 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 Rel wrel 5594 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: cofunex2g 7792 fin1a2lem7 10162 revco 14547 ccatco 14548 pfxco 14551 lswco 14552 isofval 17469 bcthlem4 24491 sseqval 32355 sinccvglem 33630 |
Copyright terms: Public domain | W3C validator |