| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofunexg | Structured version Visualization version GIF version | ||
| Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.) |
| Ref | Expression |
|---|---|
| cofunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6063 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 2 | relssdmrn 6221 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) |
| 4 | dmcoss 5920 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
| 5 | dmexg 7841 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → dom 𝐵 ∈ V) | |
| 6 | ssexg 5265 | . . . . 5 ⊢ ((dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴 ∘ 𝐵) ∈ V) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ∘ 𝐵) ∈ V) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ∘ 𝐵) ∈ V) |
| 9 | rnco 6205 | . . . 4 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 10 | rnexg 7842 | . . . . . 6 ⊢ (𝐵 ∈ 𝐶 → ran 𝐵 ∈ V) | |
| 11 | resfunexg 7155 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V) | |
| 12 | 10, 11 | sylan2 593 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ ran 𝐵) ∈ V) |
| 13 | rnexg 7842 | . . . . 5 ⊢ ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V) |
| 15 | 9, 14 | eqeltrid 2832 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ∘ 𝐵) ∈ V) |
| 16 | 8, 15 | xpexd 7691 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) |
| 17 | ssexg 5265 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∧ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 18 | 3, 16, 17 | sylancr 587 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 × cxp 5621 dom cdm 5623 ran crn 5624 ↾ cres 5625 ∘ ccom 5627 Rel wrel 5628 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 |
| This theorem is referenced by: cofunex2g 7892 fin1a2lem7 10319 revco 14759 ccatco 14760 pfxco 14763 lswco 14764 isofval 17682 bcthlem4 25243 sseqval 34355 sinccvglem 35644 |
| Copyright terms: Public domain | W3C validator |