MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofunexg Structured version   Visualization version   GIF version

Theorem cofunexg 7952
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 6100 . . 3 Rel (𝐴𝐵)
2 relssdmrn 6262 . . 3 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
31, 2ax-mp 5 . 2 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
4 dmcoss 5959 . . . . 5 dom (𝐴𝐵) ⊆ dom 𝐵
5 dmexg 7902 . . . . 5 (𝐵𝐶 → dom 𝐵 ∈ V)
6 ssexg 5298 . . . . 5 ((dom (𝐴𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴𝐵) ∈ V)
74, 5, 6sylancr 587 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
87adantl 481 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
9 rnco 6246 . . . 4 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
10 rnexg 7903 . . . . . 6 (𝐵𝐶 → ran 𝐵 ∈ V)
11 resfunexg 7212 . . . . . 6 ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V)
1210, 11sylan2 593 . . . . 5 ((Fun 𝐴𝐵𝐶) → (𝐴 ↾ ran 𝐵) ∈ V)
13 rnexg 7903 . . . . 5 ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V)
1412, 13syl 17 . . . 4 ((Fun 𝐴𝐵𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V)
159, 14eqeltrid 2839 . . 3 ((Fun 𝐴𝐵𝐶) → ran (𝐴𝐵) ∈ V)
168, 15xpexd 7750 . 2 ((Fun 𝐴𝐵𝐶) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
17 ssexg 5298 . 2 (((𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∧ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
183, 16, 17sylancr 587 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3464  wss 3931   × cxp 5657  dom cdm 5659  ran crn 5660  cres 5661  ccom 5663  Rel wrel 5664  Fun wfun 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by:  cofunex2g  7953  fin1a2lem7  10425  revco  14858  ccatco  14859  pfxco  14862  lswco  14863  isofval  17775  bcthlem4  25284  sseqval  34425  sinccvglem  35699
  Copyright terms: Public domain W3C validator