MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiima Structured version   Visualization version   GIF version

Theorem resiima 5944
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
resiima (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)

Proof of Theorem resiima
StepHypRef Expression
1 df-ima 5564 . . 3 (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)
21a1i 11 . 2 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵))
3 resabs1 5881 . . 3 (𝐵𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵))
43rneqd 5807 . 2 (𝐵𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵))
5 rnresi 5943 . . 3 ran ( I ↾ 𝐵) = 𝐵
65a1i 11 . 2 (𝐵𝐴 → ran ( I ↾ 𝐵) = 𝐵)
72, 4, 63eqtrd 2781 1 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wss 3866   I cid 5454  ran crn 5552  cres 5553  cima 5554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564
This theorem is referenced by:  fipreima  8982  psgnunilem1  18885  islinds2  20775  lindsind2  20781  ssidcn  22152  idqtop  22603  fmid  22857  ellspds  31278  rrhre  31683  sitmcl  32030  bj-imdirid  35092  bj-iminvid  35101  poimirlem15  35529  isomgreqve  44950  ushrisomgr  44966
  Copyright terms: Public domain W3C validator