MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiima Structured version   Visualization version   GIF version

Theorem resiima 6018
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
resiima (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)

Proof of Theorem resiima
StepHypRef Expression
1 df-ima 5637 . . 3 (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)
21a1i 11 . 2 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵))
3 resabs1 5957 . . 3 (𝐵𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵))
43rneqd 5883 . 2 (𝐵𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵))
5 rnresi 6017 . . 3 ran ( I ↾ 𝐵) = 𝐵
65a1i 11 . 2 (𝐵𝐴 → ran ( I ↾ 𝐵) = 𝐵)
72, 4, 63eqtrd 2781 1 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3901   I cid 5521  ran crn 5625  cres 5626  cima 5627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-br 5097  df-opab 5159  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637
This theorem is referenced by:  fipreima  9227  psgnunilem1  19197  islinds2  21125  lindsind2  21131  ssidcn  22511  idqtop  22962  fmid  23216  ellspds  31859  rrhre  32267  sitmcl  32616  bj-imdirid  35511  bj-iminvid  35520  poimirlem15  35948  isomgreqve  45695  ushrisomgr  45711
  Copyright terms: Public domain W3C validator