| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiima | Structured version Visualization version GIF version | ||
| Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
| Ref | Expression |
|---|---|
| resiima | ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5654 | . . 3 ⊢ (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)) |
| 3 | resabs1 5980 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵)) | |
| 4 | 3 | rneqd 5905 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵)) |
| 5 | rnresi 6049 | . . 3 ⊢ ran ( I ↾ 𝐵) = 𝐵 | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran ( I ↾ 𝐵) = 𝐵) |
| 7 | 2, 4, 6 | 3eqtrd 2769 | 1 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 I cid 5535 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: fipreima 9316 psgnunilem1 19430 islinds2 21729 lindsind2 21735 ssidcn 23149 idqtop 23600 fmid 23854 ellspds 33346 rrhre 34018 sitmcl 34349 bj-imdirid 37181 bj-iminvid 37190 poimirlem15 37636 grimidvtxedg 47889 ushggricedg 47931 imaidfu2lem 49102 imaidfu 49103 imaidfu2 49104 |
| Copyright terms: Public domain | W3C validator |