MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiima Structured version   Visualization version   GIF version

Theorem resiima 6032
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
resiima (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)

Proof of Theorem resiima
StepHypRef Expression
1 df-ima 5634 . . 3 (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)
21a1i 11 . 2 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵))
3 resabs1 5962 . . 3 (𝐵𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵))
43rneqd 5884 . 2 (𝐵𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵))
5 rnresi 6031 . . 3 ran ( I ↾ 𝐵) = 𝐵
65a1i 11 . 2 (𝐵𝐴 → ran ( I ↾ 𝐵) = 𝐵)
72, 4, 63eqtrd 2772 1 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3898   I cid 5515  ran crn 5622  cres 5623  cima 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  fipreima  9253  psgnunilem1  19413  islinds2  21759  lindsind2  21765  ssidcn  23190  idqtop  23641  fmid  23895  ellspds  33377  rrhre  34106  sitmcl  34436  bj-imdirid  37303  bj-iminvid  37312  poimirlem15  37748  grimidvtxedg  48047  ushggricedg  48089  imaidfu2lem  49270  imaidfu  49271  imaidfu2  49272
  Copyright terms: Public domain W3C validator