MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiima Structured version   Visualization version   GIF version

Theorem resiima 6047
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
resiima (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)

Proof of Theorem resiima
StepHypRef Expression
1 df-ima 5651 . . 3 (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)
21a1i 11 . 2 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵))
3 resabs1 5977 . . 3 (𝐵𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵))
43rneqd 5902 . 2 (𝐵𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵))
5 rnresi 6046 . . 3 ran ( I ↾ 𝐵) = 𝐵
65a1i 11 . 2 (𝐵𝐴 → ran ( I ↾ 𝐵) = 𝐵)
72, 4, 63eqtrd 2768 1 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3914   I cid 5532  ran crn 5639  cres 5640  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  fipreima  9309  psgnunilem1  19423  islinds2  21722  lindsind2  21728  ssidcn  23142  idqtop  23593  fmid  23847  ellspds  33339  rrhre  34011  sitmcl  34342  bj-imdirid  37174  bj-iminvid  37183  poimirlem15  37629  grimidvtxedg  47885  ushggricedg  47927  imaidfu2lem  49098  imaidfu  49099  imaidfu2  49100
  Copyright terms: Public domain W3C validator