Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resiima | Structured version Visualization version GIF version |
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
Ref | Expression |
---|---|
resiima | ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5564 | . . 3 ⊢ (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)) |
3 | resabs1 5881 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵)) | |
4 | 3 | rneqd 5807 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵)) |
5 | rnresi 5943 | . . 3 ⊢ ran ( I ↾ 𝐵) = 𝐵 | |
6 | 5 | a1i 11 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran ( I ↾ 𝐵) = 𝐵) |
7 | 2, 4, 6 | 3eqtrd 2781 | 1 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ⊆ wss 3866 I cid 5454 ran crn 5552 ↾ cres 5553 “ cima 5554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 |
This theorem is referenced by: fipreima 8982 psgnunilem1 18885 islinds2 20775 lindsind2 20781 ssidcn 22152 idqtop 22603 fmid 22857 ellspds 31278 rrhre 31683 sitmcl 32030 bj-imdirid 35092 bj-iminvid 35101 poimirlem15 35529 isomgreqve 44950 ushrisomgr 44966 |
Copyright terms: Public domain | W3C validator |