| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiima | Structured version Visualization version GIF version | ||
| Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
| Ref | Expression |
|---|---|
| resiima | ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . . 3 ⊢ (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)) |
| 3 | resabs1 5977 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵)) | |
| 4 | 3 | rneqd 5902 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵)) |
| 5 | rnresi 6046 | . . 3 ⊢ ran ( I ↾ 𝐵) = 𝐵 | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran ( I ↾ 𝐵) = 𝐵) |
| 7 | 2, 4, 6 | 3eqtrd 2768 | 1 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 I cid 5532 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: fipreima 9309 psgnunilem1 19423 islinds2 21722 lindsind2 21728 ssidcn 23142 idqtop 23593 fmid 23847 ellspds 33339 rrhre 34011 sitmcl 34342 bj-imdirid 37174 bj-iminvid 37183 poimirlem15 37629 grimidvtxedg 47885 ushggricedg 47927 imaidfu2lem 49098 imaidfu 49099 imaidfu2 49100 |
| Copyright terms: Public domain | W3C validator |