| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiima | Structured version Visualization version GIF version | ||
| Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
| Ref | Expression |
|---|---|
| resiima | ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5667 | . . 3 ⊢ (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)) |
| 3 | resabs1 5993 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵)) | |
| 4 | 3 | rneqd 5918 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵)) |
| 5 | rnresi 6062 | . . 3 ⊢ ran ( I ↾ 𝐵) = 𝐵 | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran ( I ↾ 𝐵) = 𝐵) |
| 7 | 2, 4, 6 | 3eqtrd 2774 | 1 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 I cid 5547 ran crn 5655 ↾ cres 5656 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: fipreima 9370 psgnunilem1 19474 islinds2 21773 lindsind2 21779 ssidcn 23193 idqtop 23644 fmid 23898 ellspds 33383 rrhre 34052 sitmcl 34383 bj-imdirid 37204 bj-iminvid 37213 poimirlem15 37659 grimidvtxedg 47898 ushggricedg 47940 imaidfu2lem 49068 imaidfu 49069 imaidfu2 49070 |
| Copyright terms: Public domain | W3C validator |