| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idqtop | Structured version Visualization version GIF version | ||
| Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| idqtop | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvresid 6615 | . . . . . . 7 ⊢ ◡( I ↾ 𝑋) = ( I ↾ 𝑋) | |
| 2 | 1 | imaeq1i 6044 | . . . . . 6 ⊢ (◡( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥) |
| 3 | resiima 6063 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 5 | 2, 4 | eqtrid 2782 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (◡( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 6 | 5 | eleq1d 2819 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽)) |
| 7 | 6 | pm5.32da 579 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽))) |
| 8 | f1oi 6856 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 9 | f1ofo 6825 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
| 10 | 8, 9 | mp1i 13 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋):𝑋–onto→𝑋) |
| 11 | elqtop3 23641 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) | |
| 12 | 10, 11 | mpdan 687 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) |
| 13 | toponss 22865 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
| 14 | 13 | ex 412 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ 𝐽 → 𝑥 ⊆ 𝑋)) |
| 15 | 14 | pm4.71rd 562 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ 𝐽 ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽))) |
| 16 | 7, 12, 15 | 3bitr4d 311 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ 𝑥 ∈ 𝐽)) |
| 17 | 16 | eqrdv 2733 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 I cid 5547 ◡ccnv 5653 ↾ cres 5656 “ cima 5657 –onto→wfo 6529 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 qTop cqtop 17517 TopOnctopon 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-qtop 17521 df-topon 22849 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |