Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idqtop | Structured version Visualization version GIF version |
Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
idqtop | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvresid 6511 | . . . . . . 7 ⊢ ◡( I ↾ 𝑋) = ( I ↾ 𝑋) | |
2 | 1 | imaeq1i 5965 | . . . . . 6 ⊢ (◡( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥) |
3 | resiima 5983 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥) | |
4 | 3 | adantl 482 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥) |
5 | 2, 4 | eqtrid 2792 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (◡( I ↾ 𝑋) “ 𝑥) = 𝑥) |
6 | 5 | eleq1d 2825 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽)) |
7 | 6 | pm5.32da 579 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽))) |
8 | f1oi 6751 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
9 | f1ofo 6721 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
10 | 8, 9 | mp1i 13 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋):𝑋–onto→𝑋) |
11 | elqtop3 22852 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) | |
12 | 10, 11 | mpdan 684 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) |
13 | toponss 22074 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
14 | 13 | ex 413 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ 𝐽 → 𝑥 ⊆ 𝑋)) |
15 | 14 | pm4.71rd 563 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ 𝐽 ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽))) |
16 | 7, 12, 15 | 3bitr4d 311 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ 𝑥 ∈ 𝐽)) |
17 | 16 | eqrdv 2738 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 I cid 5489 ◡ccnv 5589 ↾ cres 5592 “ cima 5593 –onto→wfo 6430 –1-1-onto→wf1o 6431 ‘cfv 6432 (class class class)co 7271 qTop cqtop 17212 TopOnctopon 22057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-qtop 17216 df-topon 22058 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |