MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idqtop Structured version   Visualization version   GIF version

Theorem idqtop 23730
Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
idqtop (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽)

Proof of Theorem idqtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnvresid 6647 . . . . . . 7 ( I ↾ 𝑋) = ( I ↾ 𝑋)
21imaeq1i 6077 . . . . . 6 (( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥)
3 resiima 6096 . . . . . . 7 (𝑥𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
43adantl 481 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
52, 4eqtrid 2787 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
65eleq1d 2824 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → ((( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝑥𝐽))
76pm5.32da 579 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥𝑋 ∧ (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽) ↔ (𝑥𝑋𝑥𝐽)))
8 f1oi 6887 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
9 f1ofo 6856 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
108, 9mp1i 13 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋):𝑋onto𝑋)
11 elqtop3 23727 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ ( I ↾ 𝑋):𝑋onto𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥𝑋 ∧ (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
1210, 11mpdan 687 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥𝑋 ∧ (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
13 toponss 22949 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
1413ex 412 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝐽𝑥𝑋))
1514pm4.71rd 562 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝐽 ↔ (𝑥𝑋𝑥𝐽)))
167, 12, 153bitr4d 311 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ 𝑥𝐽))
1716eqrdv 2733 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wss 3963   I cid 5582  ccnv 5688  cres 5691  cima 5692  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431   qTop cqtop 17550  TopOnctopon 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-qtop 17554  df-topon 22933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator