MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idqtop Structured version   Visualization version   GIF version

Theorem idqtop 22902
Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
idqtop (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽)

Proof of Theorem idqtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnvresid 6542 . . . . . . 7 ( I ↾ 𝑋) = ( I ↾ 𝑋)
21imaeq1i 5976 . . . . . 6 (( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥)
3 resiima 5994 . . . . . . 7 (𝑥𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
43adantl 483 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
52, 4eqtrid 2788 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
65eleq1d 2821 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → ((( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝑥𝐽))
76pm5.32da 580 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥𝑋 ∧ (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽) ↔ (𝑥𝑋𝑥𝐽)))
8 f1oi 6784 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
9 f1ofo 6753 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
108, 9mp1i 13 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋):𝑋onto𝑋)
11 elqtop3 22899 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ ( I ↾ 𝑋):𝑋onto𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥𝑋 ∧ (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
1210, 11mpdan 685 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥𝑋 ∧ (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
13 toponss 22121 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
1413ex 414 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝐽𝑥𝑋))
1514pm4.71rd 564 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝐽 ↔ (𝑥𝑋𝑥𝐽)))
167, 12, 153bitr4d 311 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ 𝑥𝐽))
1716eqrdv 2734 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wss 3892   I cid 5499  ccnv 5599  cres 5602  cima 5603  ontowfo 6456  1-1-ontowf1o 6457  cfv 6458  (class class class)co 7307   qTop cqtop 17259  TopOnctopon 22104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-qtop 17263  df-topon 22105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator