MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idqtop Structured version   Visualization version   GIF version

Theorem idqtop 22557
Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
idqtop (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽)

Proof of Theorem idqtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnvresid 6437 . . . . . . 7 ( I ↾ 𝑋) = ( I ↾ 𝑋)
21imaeq1i 5911 . . . . . 6 (( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥)
3 resiima 5929 . . . . . . 7 (𝑥𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
43adantl 485 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
52, 4syl5eq 2783 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
65eleq1d 2815 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → ((( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝑥𝐽))
76pm5.32da 582 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥𝑋 ∧ (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽) ↔ (𝑥𝑋𝑥𝐽)))
8 f1oi 6676 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
9 f1ofo 6646 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
108, 9mp1i 13 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋):𝑋onto𝑋)
11 elqtop3 22554 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ ( I ↾ 𝑋):𝑋onto𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥𝑋 ∧ (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
1210, 11mpdan 687 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥𝑋 ∧ (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
13 toponss 21778 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
1413ex 416 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝐽𝑥𝑋))
1514pm4.71rd 566 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝐽 ↔ (𝑥𝑋𝑥𝐽)))
167, 12, 153bitr4d 314 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ 𝑥𝐽))
1716eqrdv 2734 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wss 3853   I cid 5439  ccnv 5535  cres 5538  cima 5539  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7191   qTop cqtop 16962  TopOnctopon 21761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-qtop 16966  df-topon 21762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator