| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idqtop | Structured version Visualization version GIF version | ||
| Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| idqtop | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvresid 6595 | . . . . . . 7 ⊢ ◡( I ↾ 𝑋) = ( I ↾ 𝑋) | |
| 2 | 1 | imaeq1i 6028 | . . . . . 6 ⊢ (◡( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥) |
| 3 | resiima 6047 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 5 | 2, 4 | eqtrid 2776 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (◡( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 6 | 5 | eleq1d 2813 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽)) |
| 7 | 6 | pm5.32da 579 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽))) |
| 8 | f1oi 6838 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 9 | f1ofo 6807 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
| 10 | 8, 9 | mp1i 13 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋):𝑋–onto→𝑋) |
| 11 | elqtop3 23590 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) | |
| 12 | 10, 11 | mpdan 687 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) |
| 13 | toponss 22814 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
| 14 | 13 | ex 412 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ 𝐽 → 𝑥 ⊆ 𝑋)) |
| 15 | 14 | pm4.71rd 562 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ 𝐽 ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽))) |
| 16 | 7, 12, 15 | 3bitr4d 311 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ 𝑥 ∈ 𝐽)) |
| 17 | 16 | eqrdv 2727 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 I cid 5532 ◡ccnv 5637 ↾ cres 5640 “ cima 5641 –onto→wfo 6509 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 qTop cqtop 17466 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-qtop 17470 df-topon 22798 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |