![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idqtop | Structured version Visualization version GIF version |
Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
idqtop | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvresid 6647 | . . . . . . 7 ⊢ ◡( I ↾ 𝑋) = ( I ↾ 𝑋) | |
2 | 1 | imaeq1i 6077 | . . . . . 6 ⊢ (◡( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥) |
3 | resiima 6096 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥) | |
4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (( I ↾ 𝑋) “ 𝑥) = 𝑥) |
5 | 2, 4 | eqtrid 2787 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (◡( I ↾ 𝑋) “ 𝑥) = 𝑥) |
6 | 5 | eleq1d 2824 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽)) |
7 | 6 | pm5.32da 579 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽))) |
8 | f1oi 6887 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
9 | f1ofo 6856 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
10 | 8, 9 | mp1i 13 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋):𝑋–onto→𝑋) |
11 | elqtop3 23727 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) | |
12 | 10, 11 | mpdan 687 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ (𝑥 ⊆ 𝑋 ∧ (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) |
13 | toponss 22949 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
14 | 13 | ex 412 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ 𝐽 → 𝑥 ⊆ 𝑋)) |
15 | 14 | pm4.71rd 562 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ 𝐽 ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐽))) |
16 | 7, 12, 15 | 3bitr4d 311 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝐽 qTop ( I ↾ 𝑋)) ↔ 𝑥 ∈ 𝐽)) |
17 | 16 | eqrdv 2733 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 I cid 5582 ◡ccnv 5688 ↾ cres 5691 “ cima 5692 –onto→wfo 6561 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 qTop cqtop 17550 TopOnctopon 22932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-qtop 17554 df-topon 22933 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |