| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lindsind2 | Structured version Visualization version GIF version | ||
| Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lindfind2.k | ⊢ 𝐾 = (LSpan‘𝑊) |
| lindfind2.l | ⊢ 𝐿 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lindsind2 | ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → (𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing)) | |
| 2 | linds2 21757 | . . . 4 ⊢ (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ( I ↾ 𝐹) LIndF 𝑊) |
| 4 | dmresi 6008 | . . . . . 6 ⊢ dom ( I ↾ 𝐹) = 𝐹 | |
| 5 | 4 | eleq2i 2825 | . . . . 5 ⊢ (𝐸 ∈ dom ( I ↾ 𝐹) ↔ 𝐸 ∈ 𝐹) |
| 6 | 5 | biimpri 228 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → 𝐸 ∈ dom ( I ↾ 𝐹)) |
| 7 | 6 | 3ad2ant3 1135 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → 𝐸 ∈ dom ( I ↾ 𝐹)) |
| 8 | lindfind2.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
| 9 | lindfind2.l | . . . 4 ⊢ 𝐿 = (Scalar‘𝑊) | |
| 10 | 8, 9 | lindfind2 21764 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ ( I ↾ 𝐹) LIndF 𝑊 ∧ 𝐸 ∈ dom ( I ↾ 𝐹)) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})))) |
| 11 | 1, 3, 7, 10 | syl3anc 1373 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})))) |
| 12 | fvresi 7116 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → (( I ↾ 𝐹)‘𝐸) = 𝐸) | |
| 13 | 4 | difeq1i 4071 | . . . . . . . 8 ⊢ (dom ( I ↾ 𝐹) ∖ {𝐸}) = (𝐹 ∖ {𝐸}) |
| 14 | 13 | imaeq2i 6014 | . . . . . . 7 ⊢ (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) |
| 15 | difss 4085 | . . . . . . . 8 ⊢ (𝐹 ∖ {𝐸}) ⊆ 𝐹 | |
| 16 | resiima 6032 | . . . . . . . 8 ⊢ ((𝐹 ∖ {𝐸}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸})) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸}) |
| 18 | 14, 17 | eqtri 2756 | . . . . . 6 ⊢ (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (𝐹 ∖ {𝐸}) |
| 19 | 18 | fveq2i 6834 | . . . . 5 ⊢ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸})) |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸}))) |
| 21 | 12, 20 | eleq12d 2827 | . . 3 ⊢ (𝐸 ∈ 𝐹 → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))) |
| 22 | 21 | 3ad2ant3 1135 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))) |
| 23 | 11, 22 | mtbid 324 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 class class class wbr 5095 I cid 5515 dom cdm 5621 ↾ cres 5623 “ cima 5624 ‘cfv 6489 Scalarcsca 17171 NzRingcnzr 20436 LModclmod 20802 LSpanclspn 20913 LIndF clindf 21750 LIndSclinds 21751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mgp 20067 df-ur 20108 df-ring 20161 df-nzr 20437 df-lmod 20804 df-lindf 21752 df-linds 21753 |
| This theorem is referenced by: islinds4 21781 lindsadd 37726 lindsdom 37727 lindsenlbs 37728 aacllem 49962 |
| Copyright terms: Public domain | W3C validator |