| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lindsind2 | Structured version Visualization version GIF version | ||
| Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lindfind2.k | ⊢ 𝐾 = (LSpan‘𝑊) |
| lindfind2.l | ⊢ 𝐿 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lindsind2 | ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → (𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing)) | |
| 2 | linds2 21720 | . . . 4 ⊢ (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ( I ↾ 𝐹) LIndF 𝑊) |
| 4 | dmresi 6023 | . . . . . 6 ⊢ dom ( I ↾ 𝐹) = 𝐹 | |
| 5 | 4 | eleq2i 2820 | . . . . 5 ⊢ (𝐸 ∈ dom ( I ↾ 𝐹) ↔ 𝐸 ∈ 𝐹) |
| 6 | 5 | biimpri 228 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → 𝐸 ∈ dom ( I ↾ 𝐹)) |
| 7 | 6 | 3ad2ant3 1135 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → 𝐸 ∈ dom ( I ↾ 𝐹)) |
| 8 | lindfind2.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
| 9 | lindfind2.l | . . . 4 ⊢ 𝐿 = (Scalar‘𝑊) | |
| 10 | 8, 9 | lindfind2 21727 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ ( I ↾ 𝐹) LIndF 𝑊 ∧ 𝐸 ∈ dom ( I ↾ 𝐹)) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})))) |
| 11 | 1, 3, 7, 10 | syl3anc 1373 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})))) |
| 12 | fvresi 7147 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → (( I ↾ 𝐹)‘𝐸) = 𝐸) | |
| 13 | 4 | difeq1i 4085 | . . . . . . . 8 ⊢ (dom ( I ↾ 𝐹) ∖ {𝐸}) = (𝐹 ∖ {𝐸}) |
| 14 | 13 | imaeq2i 6029 | . . . . . . 7 ⊢ (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) |
| 15 | difss 4099 | . . . . . . . 8 ⊢ (𝐹 ∖ {𝐸}) ⊆ 𝐹 | |
| 16 | resiima 6047 | . . . . . . . 8 ⊢ ((𝐹 ∖ {𝐸}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸})) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸}) |
| 18 | 14, 17 | eqtri 2752 | . . . . . 6 ⊢ (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (𝐹 ∖ {𝐸}) |
| 19 | 18 | fveq2i 6861 | . . . . 5 ⊢ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸})) |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸}))) |
| 21 | 12, 20 | eleq12d 2822 | . . 3 ⊢ (𝐸 ∈ 𝐹 → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))) |
| 22 | 21 | 3ad2ant3 1135 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))) |
| 23 | 11, 22 | mtbid 324 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 class class class wbr 5107 I cid 5532 dom cdm 5638 ↾ cres 5640 “ cima 5641 ‘cfv 6511 Scalarcsca 17223 NzRingcnzr 20421 LModclmod 20766 LSpanclspn 20877 LIndF clindf 21713 LIndSclinds 21714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mgp 20050 df-ur 20091 df-ring 20144 df-nzr 20422 df-lmod 20768 df-lindf 21715 df-linds 21716 |
| This theorem is referenced by: islinds4 21744 lindsadd 37607 lindsdom 37608 lindsenlbs 37609 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |