![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lindsind2 | Structured version Visualization version GIF version |
Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindfind2.k | β’ πΎ = (LSpanβπ) |
lindfind2.l | β’ πΏ = (Scalarβπ) |
Ref | Expression |
---|---|
lindsind2 | β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β Β¬ πΈ β (πΎβ(πΉ β {πΈ}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β (π β LMod β§ πΏ β NzRing)) | |
2 | linds2 21365 | . . . 4 β’ (πΉ β (LIndSβπ) β ( I βΎ πΉ) LIndF π) | |
3 | 2 | 3ad2ant2 1134 | . . 3 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β ( I βΎ πΉ) LIndF π) |
4 | dmresi 6051 | . . . . . 6 β’ dom ( I βΎ πΉ) = πΉ | |
5 | 4 | eleq2i 2825 | . . . . 5 β’ (πΈ β dom ( I βΎ πΉ) β πΈ β πΉ) |
6 | 5 | biimpri 227 | . . . 4 β’ (πΈ β πΉ β πΈ β dom ( I βΎ πΉ)) |
7 | 6 | 3ad2ant3 1135 | . . 3 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β πΈ β dom ( I βΎ πΉ)) |
8 | lindfind2.k | . . . 4 β’ πΎ = (LSpanβπ) | |
9 | lindfind2.l | . . . 4 β’ πΏ = (Scalarβπ) | |
10 | 8, 9 | lindfind2 21372 | . . 3 β’ (((π β LMod β§ πΏ β NzRing) β§ ( I βΎ πΉ) LIndF π β§ πΈ β dom ( I βΎ πΉ)) β Β¬ (( I βΎ πΉ)βπΈ) β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ})))) |
11 | 1, 3, 7, 10 | syl3anc 1371 | . 2 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β Β¬ (( I βΎ πΉ)βπΈ) β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ})))) |
12 | fvresi 7170 | . . . 4 β’ (πΈ β πΉ β (( I βΎ πΉ)βπΈ) = πΈ) | |
13 | 4 | difeq1i 4118 | . . . . . . . 8 β’ (dom ( I βΎ πΉ) β {πΈ}) = (πΉ β {πΈ}) |
14 | 13 | imaeq2i 6057 | . . . . . . 7 β’ (( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ})) = (( I βΎ πΉ) β (πΉ β {πΈ})) |
15 | difss 4131 | . . . . . . . 8 β’ (πΉ β {πΈ}) β πΉ | |
16 | resiima 6075 | . . . . . . . 8 β’ ((πΉ β {πΈ}) β πΉ β (( I βΎ πΉ) β (πΉ β {πΈ})) = (πΉ β {πΈ})) | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 β’ (( I βΎ πΉ) β (πΉ β {πΈ})) = (πΉ β {πΈ}) |
18 | 14, 17 | eqtri 2760 | . . . . . 6 β’ (( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ})) = (πΉ β {πΈ}) |
19 | 18 | fveq2i 6894 | . . . . 5 β’ (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ}))) = (πΎβ(πΉ β {πΈ})) |
20 | 19 | a1i 11 | . . . 4 β’ (πΈ β πΉ β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ}))) = (πΎβ(πΉ β {πΈ}))) |
21 | 12, 20 | eleq12d 2827 | . . 3 β’ (πΈ β πΉ β ((( I βΎ πΉ)βπΈ) β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ}))) β πΈ β (πΎβ(πΉ β {πΈ})))) |
22 | 21 | 3ad2ant3 1135 | . 2 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β ((( I βΎ πΉ)βπΈ) β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ}))) β πΈ β (πΎβ(πΉ β {πΈ})))) |
23 | 11, 22 | mtbid 323 | 1 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β Β¬ πΈ β (πΎβ(πΉ β {πΈ}))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β cdif 3945 β wss 3948 {csn 4628 class class class wbr 5148 I cid 5573 dom cdm 5676 βΎ cres 5678 β cima 5679 βcfv 6543 Scalarcsca 17199 NzRingcnzr 20290 LModclmod 20470 LSpanclspn 20581 LIndF clindf 21358 LIndSclinds 21359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mgp 19987 df-ur 20004 df-ring 20057 df-nzr 20291 df-lmod 20472 df-lindf 21360 df-linds 21361 |
This theorem is referenced by: islinds4 21389 lindsadd 36476 lindsdom 36477 lindsenlbs 36478 aacllem 47838 |
Copyright terms: Public domain | W3C validator |