MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsind2 Structured version   Visualization version   GIF version

Theorem lindsind2 21839
Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind2.k 𝐾 = (LSpan‘𝑊)
lindfind2.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindsind2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))

Proof of Theorem lindsind2
StepHypRef Expression
1 simp1 1137 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → (𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing))
2 linds2 21831 . . . 4 (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊)
323ad2ant2 1135 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ( I ↾ 𝐹) LIndF 𝑊)
4 dmresi 6070 . . . . . 6 dom ( I ↾ 𝐹) = 𝐹
54eleq2i 2833 . . . . 5 (𝐸 ∈ dom ( I ↾ 𝐹) ↔ 𝐸𝐹)
65biimpri 228 . . . 4 (𝐸𝐹𝐸 ∈ dom ( I ↾ 𝐹))
763ad2ant3 1136 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → 𝐸 ∈ dom ( I ↾ 𝐹))
8 lindfind2.k . . . 4 𝐾 = (LSpan‘𝑊)
9 lindfind2.l . . . 4 𝐿 = (Scalar‘𝑊)
108, 9lindfind2 21838 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ ( I ↾ 𝐹) LIndF 𝑊𝐸 ∈ dom ( I ↾ 𝐹)) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))))
111, 3, 7, 10syl3anc 1373 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))))
12 fvresi 7193 . . . 4 (𝐸𝐹 → (( I ↾ 𝐹)‘𝐸) = 𝐸)
134difeq1i 4122 . . . . . . . 8 (dom ( I ↾ 𝐹) ∖ {𝐸}) = (𝐹 ∖ {𝐸})
1413imaeq2i 6076 . . . . . . 7 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸}))
15 difss 4136 . . . . . . . 8 (𝐹 ∖ {𝐸}) ⊆ 𝐹
16 resiima 6094 . . . . . . . 8 ((𝐹 ∖ {𝐸}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸}))
1715, 16ax-mp 5 . . . . . . 7 (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸})
1814, 17eqtri 2765 . . . . . 6 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (𝐹 ∖ {𝐸})
1918fveq2i 6909 . . . . 5 (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸}))
2019a1i 11 . . . 4 (𝐸𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸})))
2112, 20eleq12d 2835 . . 3 (𝐸𝐹 → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))))
22213ad2ant3 1136 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))))
2311, 22mtbid 324 1 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cdif 3948  wss 3951  {csn 4626   class class class wbr 5143   I cid 5577  dom cdm 5685  cres 5687  cima 5688  cfv 6561  Scalarcsca 17300  NzRingcnzr 20512  LModclmod 20858  LSpanclspn 20969   LIndF clindf 21824  LIndSclinds 21825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mgp 20138  df-ur 20179  df-ring 20232  df-nzr 20513  df-lmod 20860  df-lindf 21826  df-linds 21827
This theorem is referenced by:  islinds4  21855  lindsadd  37620  lindsdom  37621  lindsenlbs  37622  aacllem  49320
  Copyright terms: Public domain W3C validator