![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lindsind2 | Structured version Visualization version GIF version |
Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindfind2.k | β’ πΎ = (LSpanβπ) |
lindfind2.l | β’ πΏ = (Scalarβπ) |
Ref | Expression |
---|---|
lindsind2 | β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β Β¬ πΈ β (πΎβ(πΉ β {πΈ}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β (π β LMod β§ πΏ β NzRing)) | |
2 | linds2 21706 | . . . 4 β’ (πΉ β (LIndSβπ) β ( I βΎ πΉ) LIndF π) | |
3 | 2 | 3ad2ant2 1131 | . . 3 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β ( I βΎ πΉ) LIndF π) |
4 | dmresi 6045 | . . . . . 6 β’ dom ( I βΎ πΉ) = πΉ | |
5 | 4 | eleq2i 2819 | . . . . 5 β’ (πΈ β dom ( I βΎ πΉ) β πΈ β πΉ) |
6 | 5 | biimpri 227 | . . . 4 β’ (πΈ β πΉ β πΈ β dom ( I βΎ πΉ)) |
7 | 6 | 3ad2ant3 1132 | . . 3 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β πΈ β dom ( I βΎ πΉ)) |
8 | lindfind2.k | . . . 4 β’ πΎ = (LSpanβπ) | |
9 | lindfind2.l | . . . 4 β’ πΏ = (Scalarβπ) | |
10 | 8, 9 | lindfind2 21713 | . . 3 β’ (((π β LMod β§ πΏ β NzRing) β§ ( I βΎ πΉ) LIndF π β§ πΈ β dom ( I βΎ πΉ)) β Β¬ (( I βΎ πΉ)βπΈ) β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ})))) |
11 | 1, 3, 7, 10 | syl3anc 1368 | . 2 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β Β¬ (( I βΎ πΉ)βπΈ) β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ})))) |
12 | fvresi 7167 | . . . 4 β’ (πΈ β πΉ β (( I βΎ πΉ)βπΈ) = πΈ) | |
13 | 4 | difeq1i 4113 | . . . . . . . 8 β’ (dom ( I βΎ πΉ) β {πΈ}) = (πΉ β {πΈ}) |
14 | 13 | imaeq2i 6051 | . . . . . . 7 β’ (( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ})) = (( I βΎ πΉ) β (πΉ β {πΈ})) |
15 | difss 4126 | . . . . . . . 8 β’ (πΉ β {πΈ}) β πΉ | |
16 | resiima 6069 | . . . . . . . 8 β’ ((πΉ β {πΈ}) β πΉ β (( I βΎ πΉ) β (πΉ β {πΈ})) = (πΉ β {πΈ})) | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 β’ (( I βΎ πΉ) β (πΉ β {πΈ})) = (πΉ β {πΈ}) |
18 | 14, 17 | eqtri 2754 | . . . . . 6 β’ (( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ})) = (πΉ β {πΈ}) |
19 | 18 | fveq2i 6888 | . . . . 5 β’ (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ}))) = (πΎβ(πΉ β {πΈ})) |
20 | 19 | a1i 11 | . . . 4 β’ (πΈ β πΉ β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ}))) = (πΎβ(πΉ β {πΈ}))) |
21 | 12, 20 | eleq12d 2821 | . . 3 β’ (πΈ β πΉ β ((( I βΎ πΉ)βπΈ) β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ}))) β πΈ β (πΎβ(πΉ β {πΈ})))) |
22 | 21 | 3ad2ant3 1132 | . 2 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β ((( I βΎ πΉ)βπΈ) β (πΎβ(( I βΎ πΉ) β (dom ( I βΎ πΉ) β {πΈ}))) β πΈ β (πΎβ(πΉ β {πΈ})))) |
23 | 11, 22 | mtbid 324 | 1 β’ (((π β LMod β§ πΏ β NzRing) β§ πΉ β (LIndSβπ) β§ πΈ β πΉ) β Β¬ πΈ β (πΎβ(πΉ β {πΈ}))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β cdif 3940 β wss 3943 {csn 4623 class class class wbr 5141 I cid 5566 dom cdm 5669 βΎ cres 5671 β cima 5672 βcfv 6537 Scalarcsca 17209 NzRingcnzr 20414 LModclmod 20706 LSpanclspn 20818 LIndF clindf 21699 LIndSclinds 21700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mgp 20040 df-ur 20087 df-ring 20140 df-nzr 20415 df-lmod 20708 df-lindf 21701 df-linds 21702 |
This theorem is referenced by: islinds4 21730 lindsadd 36994 lindsdom 36995 lindsenlbs 36996 aacllem 48122 |
Copyright terms: Public domain | W3C validator |