| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lindsind2 | Structured version Visualization version GIF version | ||
| Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lindfind2.k | ⊢ 𝐾 = (LSpan‘𝑊) |
| lindfind2.l | ⊢ 𝐿 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lindsind2 | ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → (𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing)) | |
| 2 | linds2 21727 | . . . 4 ⊢ (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ( I ↾ 𝐹) LIndF 𝑊) |
| 4 | dmresi 6026 | . . . . . 6 ⊢ dom ( I ↾ 𝐹) = 𝐹 | |
| 5 | 4 | eleq2i 2821 | . . . . 5 ⊢ (𝐸 ∈ dom ( I ↾ 𝐹) ↔ 𝐸 ∈ 𝐹) |
| 6 | 5 | biimpri 228 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → 𝐸 ∈ dom ( I ↾ 𝐹)) |
| 7 | 6 | 3ad2ant3 1135 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → 𝐸 ∈ dom ( I ↾ 𝐹)) |
| 8 | lindfind2.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
| 9 | lindfind2.l | . . . 4 ⊢ 𝐿 = (Scalar‘𝑊) | |
| 10 | 8, 9 | lindfind2 21734 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ ( I ↾ 𝐹) LIndF 𝑊 ∧ 𝐸 ∈ dom ( I ↾ 𝐹)) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})))) |
| 11 | 1, 3, 7, 10 | syl3anc 1373 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})))) |
| 12 | fvresi 7150 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → (( I ↾ 𝐹)‘𝐸) = 𝐸) | |
| 13 | 4 | difeq1i 4088 | . . . . . . . 8 ⊢ (dom ( I ↾ 𝐹) ∖ {𝐸}) = (𝐹 ∖ {𝐸}) |
| 14 | 13 | imaeq2i 6032 | . . . . . . 7 ⊢ (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) |
| 15 | difss 4102 | . . . . . . . 8 ⊢ (𝐹 ∖ {𝐸}) ⊆ 𝐹 | |
| 16 | resiima 6050 | . . . . . . . 8 ⊢ ((𝐹 ∖ {𝐸}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸})) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸}) |
| 18 | 14, 17 | eqtri 2753 | . . . . . 6 ⊢ (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (𝐹 ∖ {𝐸}) |
| 19 | 18 | fveq2i 6864 | . . . . 5 ⊢ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸})) |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸}))) |
| 21 | 12, 20 | eleq12d 2823 | . . 3 ⊢ (𝐸 ∈ 𝐹 → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))) |
| 22 | 21 | 3ad2ant3 1135 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))) |
| 23 | 11, 22 | mtbid 324 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 class class class wbr 5110 I cid 5535 dom cdm 5641 ↾ cres 5643 “ cima 5644 ‘cfv 6514 Scalarcsca 17230 NzRingcnzr 20428 LModclmod 20773 LSpanclspn 20884 LIndF clindf 21720 LIndSclinds 21721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mgp 20057 df-ur 20098 df-ring 20151 df-nzr 20429 df-lmod 20775 df-lindf 21722 df-linds 21723 |
| This theorem is referenced by: islinds4 21751 lindsadd 37614 lindsdom 37615 lindsenlbs 37616 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |