Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lindsind2 | Structured version Visualization version GIF version |
Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindfind2.k | ⊢ 𝐾 = (LSpan‘𝑊) |
lindfind2.l | ⊢ 𝐿 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lindsind2 | ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → (𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing)) | |
2 | linds2 21125 | . . . 4 ⊢ (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊) | |
3 | 2 | 3ad2ant2 1133 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ( I ↾ 𝐹) LIndF 𝑊) |
4 | dmresi 5992 | . . . . . 6 ⊢ dom ( I ↾ 𝐹) = 𝐹 | |
5 | 4 | eleq2i 2828 | . . . . 5 ⊢ (𝐸 ∈ dom ( I ↾ 𝐹) ↔ 𝐸 ∈ 𝐹) |
6 | 5 | biimpri 227 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → 𝐸 ∈ dom ( I ↾ 𝐹)) |
7 | 6 | 3ad2ant3 1134 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → 𝐸 ∈ dom ( I ↾ 𝐹)) |
8 | lindfind2.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
9 | lindfind2.l | . . . 4 ⊢ 𝐿 = (Scalar‘𝑊) | |
10 | 8, 9 | lindfind2 21132 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ ( I ↾ 𝐹) LIndF 𝑊 ∧ 𝐸 ∈ dom ( I ↾ 𝐹)) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})))) |
11 | 1, 3, 7, 10 | syl3anc 1370 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})))) |
12 | fvresi 7102 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → (( I ↾ 𝐹)‘𝐸) = 𝐸) | |
13 | 4 | difeq1i 4066 | . . . . . . . 8 ⊢ (dom ( I ↾ 𝐹) ∖ {𝐸}) = (𝐹 ∖ {𝐸}) |
14 | 13 | imaeq2i 5998 | . . . . . . 7 ⊢ (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) |
15 | difss 4079 | . . . . . . . 8 ⊢ (𝐹 ∖ {𝐸}) ⊆ 𝐹 | |
16 | resiima 6015 | . . . . . . . 8 ⊢ ((𝐹 ∖ {𝐸}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸})) | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸}) |
18 | 14, 17 | eqtri 2764 | . . . . . 6 ⊢ (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (𝐹 ∖ {𝐸}) |
19 | 18 | fveq2i 6829 | . . . . 5 ⊢ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸})) |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝐸 ∈ 𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸}))) |
21 | 12, 20 | eleq12d 2831 | . . 3 ⊢ (𝐸 ∈ 𝐹 → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))) |
22 | 21 | 3ad2ant3 1134 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))) |
23 | 11, 22 | mtbid 323 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∖ cdif 3895 ⊆ wss 3898 {csn 4574 class class class wbr 5093 I cid 5518 dom cdm 5621 ↾ cres 5623 “ cima 5624 ‘cfv 6480 Scalarcsca 17063 LModclmod 20230 LSpanclspn 20340 NzRingcnzr 20635 LIndF clindf 21118 LIndSclinds 21119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-plusg 17073 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mgp 19817 df-ur 19834 df-ring 19881 df-lmod 20232 df-nzr 20636 df-lindf 21120 df-linds 21121 |
This theorem is referenced by: islinds4 21149 lindsadd 35926 lindsdom 35927 lindsenlbs 35928 aacllem 46923 |
Copyright terms: Public domain | W3C validator |