MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsind2 Structured version   Visualization version   GIF version

Theorem lindsind2 21744
Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind2.k 𝐾 = (LSpan‘𝑊)
lindfind2.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindsind2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))

Proof of Theorem lindsind2
StepHypRef Expression
1 simp1 1136 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → (𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing))
2 linds2 21736 . . . 4 (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊)
323ad2ant2 1134 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ( I ↾ 𝐹) LIndF 𝑊)
4 dmresi 6007 . . . . . 6 dom ( I ↾ 𝐹) = 𝐹
54eleq2i 2820 . . . . 5 (𝐸 ∈ dom ( I ↾ 𝐹) ↔ 𝐸𝐹)
65biimpri 228 . . . 4 (𝐸𝐹𝐸 ∈ dom ( I ↾ 𝐹))
763ad2ant3 1135 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → 𝐸 ∈ dom ( I ↾ 𝐹))
8 lindfind2.k . . . 4 𝐾 = (LSpan‘𝑊)
9 lindfind2.l . . . 4 𝐿 = (Scalar‘𝑊)
108, 9lindfind2 21743 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ ( I ↾ 𝐹) LIndF 𝑊𝐸 ∈ dom ( I ↾ 𝐹)) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))))
111, 3, 7, 10syl3anc 1373 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))))
12 fvresi 7113 . . . 4 (𝐸𝐹 → (( I ↾ 𝐹)‘𝐸) = 𝐸)
134difeq1i 4075 . . . . . . . 8 (dom ( I ↾ 𝐹) ∖ {𝐸}) = (𝐹 ∖ {𝐸})
1413imaeq2i 6013 . . . . . . 7 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸}))
15 difss 4089 . . . . . . . 8 (𝐹 ∖ {𝐸}) ⊆ 𝐹
16 resiima 6031 . . . . . . . 8 ((𝐹 ∖ {𝐸}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸}))
1715, 16ax-mp 5 . . . . . . 7 (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸})
1814, 17eqtri 2752 . . . . . 6 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (𝐹 ∖ {𝐸})
1918fveq2i 6829 . . . . 5 (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸}))
2019a1i 11 . . . 4 (𝐸𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸})))
2112, 20eleq12d 2822 . . 3 (𝐸𝐹 → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))))
22213ad2ant3 1135 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))))
2311, 22mtbid 324 1 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3902  wss 3905  {csn 4579   class class class wbr 5095   I cid 5517  dom cdm 5623  cres 5625  cima 5626  cfv 6486  Scalarcsca 17182  NzRingcnzr 20415  LModclmod 20781  LSpanclspn 20892   LIndF clindf 21729  LIndSclinds 21730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mgp 20044  df-ur 20085  df-ring 20138  df-nzr 20416  df-lmod 20783  df-lindf 21731  df-linds 21732
This theorem is referenced by:  islinds4  21760  lindsadd  37595  lindsdom  37596  lindsenlbs  37597  aacllem  49790
  Copyright terms: Public domain W3C validator