Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimidvtxedg Structured version   Visualization version   GIF version

Theorem grimidvtxedg 47360
Description: The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and a graph with the same vertices and edges. (Contributed by AV, 4-May-2025.)
Hypotheses
Ref Expression
grimidvtxsdg.g (𝜑𝐺 ∈ UHGraph)
grimidvtxsdg.h (𝜑𝐻𝑉)
grimidvtxsdg.v (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻))
grimidvtxsdg.e (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻))
Assertion
Ref Expression
grimidvtxedg (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻))

Proof of Theorem grimidvtxedg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6876 . . 3 ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)
2 grimidvtxsdg.v . . . 4 (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻))
32f1oeq3d 6835 . . 3 (𝜑 → (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)))
41, 3mpbii 232 . 2 (𝜑 → ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
5 funi 6586 . . . . 5 Fun I
6 fvex 6909 . . . . . 6 (iEdg‘𝐺) ∈ V
76dmex 7917 . . . . 5 dom (iEdg‘𝐺) ∈ V
8 resfunexg 7227 . . . . 5 ((Fun I ∧ dom (iEdg‘𝐺) ∈ V) → ( I ↾ dom (iEdg‘𝐺)) ∈ V)
95, 7, 8mp2an 690 . . . 4 ( I ↾ dom (iEdg‘𝐺)) ∈ V
109a1i 11 . . 3 (𝜑 → ( I ↾ dom (iEdg‘𝐺)) ∈ V)
11 f1oi 6876 . . . . 5 ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐺)
12 grimidvtxsdg.e . . . . . . 7 (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻))
1312dmeqd 5908 . . . . . 6 (𝜑 → dom (iEdg‘𝐺) = dom (iEdg‘𝐻))
1413f1oeq3d 6835 . . . . 5 (𝜑 → (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐺) ↔ ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
1511, 14mpbii 232 . . . 4 (𝜑 → ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
16 fvresi 7182 . . . . . . . 8 (𝑖 ∈ dom (iEdg‘𝐺) → (( I ↾ dom (iEdg‘𝐺))‘𝑖) = 𝑖)
1716adantl 480 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ dom (iEdg‘𝐺))‘𝑖) = 𝑖)
1817fveq2d 6900 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
1912eqcomd 2731 . . . . . . . 8 (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
2019fveq1d 6898 . . . . . . 7 (𝜑 → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)))
2120adantr 479 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)))
22 grimidvtxsdg.g . . . . . . . 8 (𝜑𝐺 ∈ UHGraph)
23 eqid 2725 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
24 eqid 2725 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
2523, 24uhgrss 28949 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺))
2622, 25sylan 578 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺))
27 resiima 6080 . . . . . . 7 (((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
2826, 27syl 17 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
2918, 21, 283eqtr4d 2775 . . . . 5 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))
3029ralrimiva 3135 . . . 4 (𝜑 → ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))
3115, 30jca 510 . . 3 (𝜑 → (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
32 f1oeq1 6826 . . . 4 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
33 fveq1 6895 . . . . . 6 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (𝑗𝑖) = (( I ↾ dom (iEdg‘𝐺))‘𝑖))
3433fveqeq2d 6904 . . . . 5 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
3534ralbidv 3167 . . . 4 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
3632, 35anbi12d 630 . . 3 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))) ↔ (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))))
3710, 31, 36spcedv 3582 . 2 (𝜑 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
38 grimidvtxsdg.h . . 3 (𝜑𝐻𝑉)
39 fvex 6909 . . . . 5 (Vtx‘𝐺) ∈ V
40 resfunexg 7227 . . . . 5 ((Fun I ∧ (Vtx‘𝐺) ∈ V) → ( I ↾ (Vtx‘𝐺)) ∈ V)
415, 39, 40mp2an 690 . . . 4 ( I ↾ (Vtx‘𝐺)) ∈ V
4241a1i 11 . . 3 (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ V)
43 eqid 2725 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
44 eqid 2725 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
4523, 43, 24, 44isgrim 47352 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐻𝑉 ∧ ( I ↾ (Vtx‘𝐺)) ∈ V) → (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))))
4622, 38, 42, 45syl3anc 1368 . 2 (𝜑 → (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))))
474, 37, 46mpbir2and 711 1 (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3050  Vcvv 3461  wss 3944   I cid 5575  dom cdm 5678  cres 5680  cima 5681  Fun wfun 6543  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  Vtxcvtx 28881  iEdgciedg 28882  UHGraphcuhgr 28941   GraphIso cgrim 47345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-uhgr 28943  df-grim 47348
This theorem is referenced by:  grimid  47361  opstrgric  47378
  Copyright terms: Public domain W3C validator