Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimidvtxedg Structured version   Visualization version   GIF version

Theorem grimidvtxedg 47849
Description: The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and a graph with the same vertices and edges. (Contributed by AV, 4-May-2025.)
Hypotheses
Ref Expression
grimidvtxsdg.g (𝜑𝐺 ∈ UHGraph)
grimidvtxsdg.h (𝜑𝐻𝑉)
grimidvtxsdg.v (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻))
grimidvtxsdg.e (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻))
Assertion
Ref Expression
grimidvtxedg (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻))

Proof of Theorem grimidvtxedg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6866 . . 3 ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)
2 grimidvtxsdg.v . . . 4 (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻))
32f1oeq3d 6825 . . 3 (𝜑 → (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)))
41, 3mpbii 233 . 2 (𝜑 → ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
5 funi 6578 . . . . 5 Fun I
6 fvex 6899 . . . . . 6 (iEdg‘𝐺) ∈ V
76dmex 7913 . . . . 5 dom (iEdg‘𝐺) ∈ V
8 resfunexg 7217 . . . . 5 ((Fun I ∧ dom (iEdg‘𝐺) ∈ V) → ( I ↾ dom (iEdg‘𝐺)) ∈ V)
95, 7, 8mp2an 692 . . . 4 ( I ↾ dom (iEdg‘𝐺)) ∈ V
109a1i 11 . . 3 (𝜑 → ( I ↾ dom (iEdg‘𝐺)) ∈ V)
11 f1oi 6866 . . . . 5 ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐺)
12 grimidvtxsdg.e . . . . . . 7 (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻))
1312dmeqd 5896 . . . . . 6 (𝜑 → dom (iEdg‘𝐺) = dom (iEdg‘𝐻))
1413f1oeq3d 6825 . . . . 5 (𝜑 → (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐺) ↔ ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
1511, 14mpbii 233 . . . 4 (𝜑 → ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
16 fvresi 7175 . . . . . . . 8 (𝑖 ∈ dom (iEdg‘𝐺) → (( I ↾ dom (iEdg‘𝐺))‘𝑖) = 𝑖)
1716adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ dom (iEdg‘𝐺))‘𝑖) = 𝑖)
1817fveq2d 6890 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
1912eqcomd 2740 . . . . . . . 8 (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
2019fveq1d 6888 . . . . . . 7 (𝜑 → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)))
2120adantr 480 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)))
22 grimidvtxsdg.g . . . . . . . 8 (𝜑𝐺 ∈ UHGraph)
23 eqid 2734 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
24 eqid 2734 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
2523, 24uhgrss 29010 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺))
2622, 25sylan 580 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺))
27 resiima 6074 . . . . . . 7 (((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
2826, 27syl 17 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
2918, 21, 283eqtr4d 2779 . . . . 5 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))
3029ralrimiva 3133 . . . 4 (𝜑 → ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))
3115, 30jca 511 . . 3 (𝜑 → (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
32 f1oeq1 6816 . . . 4 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
33 fveq1 6885 . . . . . 6 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (𝑗𝑖) = (( I ↾ dom (iEdg‘𝐺))‘𝑖))
3433fveqeq2d 6894 . . . . 5 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
3534ralbidv 3165 . . . 4 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
3632, 35anbi12d 632 . . 3 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))) ↔ (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))))
3710, 31, 36spcedv 3581 . 2 (𝜑 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
38 grimidvtxsdg.h . . 3 (𝜑𝐻𝑉)
39 fvex 6899 . . . . 5 (Vtx‘𝐺) ∈ V
40 resfunexg 7217 . . . . 5 ((Fun I ∧ (Vtx‘𝐺) ∈ V) → ( I ↾ (Vtx‘𝐺)) ∈ V)
415, 39, 40mp2an 692 . . . 4 ( I ↾ (Vtx‘𝐺)) ∈ V
4241a1i 11 . . 3 (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ V)
43 eqid 2734 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
44 eqid 2734 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
4523, 43, 24, 44isgrim 47841 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐻𝑉 ∧ ( I ↾ (Vtx‘𝐺)) ∈ V) → (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))))
4622, 38, 42, 45syl3anc 1372 . 2 (𝜑 → (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))))
474, 37, 46mpbir2and 713 1 (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wral 3050  Vcvv 3463  wss 3931   I cid 5557  dom cdm 5665  cres 5667  cima 5668  Fun wfun 6535  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  Vtxcvtx 28942  iEdgciedg 28943  UHGraphcuhgr 29002   GraphIso cgrim 47834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-uhgr 29004  df-grim 47837
This theorem is referenced by:  grimid  47850  opstrgric  47868
  Copyright terms: Public domain W3C validator