Step | Hyp | Ref
| Expression |
1 | | f1oi 6876 |
. . 3
⊢ ( I
↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) |
2 | | grimidvtxsdg.v |
. . . 4
⊢ (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻)) |
3 | 2 | f1oeq3d 6835 |
. . 3
⊢ (𝜑 → (( I ↾
(Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))) |
4 | 1, 3 | mpbii 232 |
. 2
⊢ (𝜑 → ( I ↾
(Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
5 | | funi 6586 |
. . . . 5
⊢ Fun
I |
6 | | fvex 6909 |
. . . . . 6
⊢
(iEdg‘𝐺)
∈ V |
7 | 6 | dmex 7917 |
. . . . 5
⊢ dom
(iEdg‘𝐺) ∈
V |
8 | | resfunexg 7227 |
. . . . 5
⊢ ((Fun I
∧ dom (iEdg‘𝐺)
∈ V) → ( I ↾ dom (iEdg‘𝐺)) ∈ V) |
9 | 5, 7, 8 | mp2an 690 |
. . . 4
⊢ ( I
↾ dom (iEdg‘𝐺))
∈ V |
10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → ( I ↾ dom
(iEdg‘𝐺)) ∈
V) |
11 | | f1oi 6876 |
. . . . 5
⊢ ( I
↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐺) |
12 | | grimidvtxsdg.e |
. . . . . . 7
⊢ (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻)) |
13 | 12 | dmeqd 5908 |
. . . . . 6
⊢ (𝜑 → dom (iEdg‘𝐺) = dom (iEdg‘𝐻)) |
14 | 13 | f1oeq3d 6835 |
. . . . 5
⊢ (𝜑 → (( I ↾ dom
(iEdg‘𝐺)):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐺) ↔ ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) |
15 | 11, 14 | mpbii 232 |
. . . 4
⊢ (𝜑 → ( I ↾ dom
(iEdg‘𝐺)):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) |
16 | | fvresi 7182 |
. . . . . . . 8
⊢ (𝑖 ∈ dom (iEdg‘𝐺) → (( I ↾ dom
(iEdg‘𝐺))‘𝑖) = 𝑖) |
17 | 16 | adantl 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ dom (iEdg‘𝐺))‘𝑖) = 𝑖) |
18 | 17 | fveq2d 6900 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
19 | 12 | eqcomd 2731 |
. . . . . . . 8
⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) |
20 | 19 | fveq1d 6898 |
. . . . . . 7
⊢ (𝜑 → ((iEdg‘𝐻)‘(( I ↾ dom
(iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom
(iEdg‘𝐺))‘𝑖))) |
21 | 20 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖))) |
22 | | grimidvtxsdg.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ UHGraph) |
23 | | eqid 2725 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
24 | | eqid 2725 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
25 | 23, 24 | uhgrss 28949 |
. . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺)) |
26 | 22, 25 | sylan 578 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺)) |
27 | | resiima 6080 |
. . . . . . 7
⊢
(((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
28 | 26, 27 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
29 | 18, 21, 28 | 3eqtr4d 2775 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))) |
30 | 29 | ralrimiva 3135 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))) |
31 | 15, 30 | jca 510 |
. . 3
⊢ (𝜑 → (( I ↾ dom
(iEdg‘𝐺)):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))) |
32 | | f1oeq1 6826 |
. . . 4
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ↔ ( I
↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) |
33 | | fveq1 6895 |
. . . . . 6
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
(𝑗‘𝑖) = (( I ↾ dom (iEdg‘𝐺))‘𝑖)) |
34 | 33 | fveqeq2d 6904 |
. . . . 5
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
(((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))) |
35 | 34 | ralbidv 3167 |
. . . 4
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
(∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))) |
36 | 32, 35 | anbi12d 630 |
. . 3
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))) ↔ (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))) |
37 | 10, 31, 36 | spcedv 3582 |
. 2
⊢ (𝜑 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))) |
38 | | grimidvtxsdg.h |
. . 3
⊢ (𝜑 → 𝐻 ∈ 𝑉) |
39 | | fvex 6909 |
. . . . 5
⊢
(Vtx‘𝐺) ∈
V |
40 | | resfunexg 7227 |
. . . . 5
⊢ ((Fun I
∧ (Vtx‘𝐺) ∈
V) → ( I ↾ (Vtx‘𝐺)) ∈ V) |
41 | 5, 39, 40 | mp2an 690 |
. . . 4
⊢ ( I
↾ (Vtx‘𝐺))
∈ V |
42 | 41 | a1i 11 |
. . 3
⊢ (𝜑 → ( I ↾
(Vtx‘𝐺)) ∈
V) |
43 | | eqid 2725 |
. . . 4
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
44 | | eqid 2725 |
. . . 4
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
45 | 23, 43, 24, 44 | isgrim 47352 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ 𝑉 ∧ ( I ↾ (Vtx‘𝐺)) ∈ V) → (( I ↾
(Vtx‘𝐺)) ∈
(𝐺 GraphIso 𝐻) ↔ (( I ↾
(Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))))) |
46 | 22, 38, 42, 45 | syl3anc 1368 |
. 2
⊢ (𝜑 → (( I ↾
(Vtx‘𝐺)) ∈
(𝐺 GraphIso 𝐻) ↔ (( I ↾
(Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))))) |
47 | 4, 37, 46 | mpbir2and 711 |
1
⊢ (𝜑 → ( I ↾
(Vtx‘𝐺)) ∈
(𝐺 GraphIso 𝐻)) |