Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimidvtxedg Structured version   Visualization version   GIF version

Theorem grimidvtxedg 47898
Description: The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and a graph with the same vertices and edges. (Contributed by AV, 4-May-2025.)
Hypotheses
Ref Expression
grimidvtxsdg.g (𝜑𝐺 ∈ UHGraph)
grimidvtxsdg.h (𝜑𝐻𝑉)
grimidvtxsdg.v (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻))
grimidvtxsdg.e (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻))
Assertion
Ref Expression
grimidvtxedg (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻))

Proof of Theorem grimidvtxedg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6856 . . 3 ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺)
2 grimidvtxsdg.v . . . 4 (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻))
32f1oeq3d 6815 . . 3 (𝜑 → (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)))
41, 3mpbii 233 . 2 (𝜑 → ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
5 funi 6568 . . . . 5 Fun I
6 fvex 6889 . . . . . 6 (iEdg‘𝐺) ∈ V
76dmex 7905 . . . . 5 dom (iEdg‘𝐺) ∈ V
8 resfunexg 7207 . . . . 5 ((Fun I ∧ dom (iEdg‘𝐺) ∈ V) → ( I ↾ dom (iEdg‘𝐺)) ∈ V)
95, 7, 8mp2an 692 . . . 4 ( I ↾ dom (iEdg‘𝐺)) ∈ V
109a1i 11 . . 3 (𝜑 → ( I ↾ dom (iEdg‘𝐺)) ∈ V)
11 f1oi 6856 . . . . 5 ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐺)
12 grimidvtxsdg.e . . . . . . 7 (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻))
1312dmeqd 5885 . . . . . 6 (𝜑 → dom (iEdg‘𝐺) = dom (iEdg‘𝐻))
1413f1oeq3d 6815 . . . . 5 (𝜑 → (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐺) ↔ ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
1511, 14mpbii 233 . . . 4 (𝜑 → ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
16 fvresi 7165 . . . . . . . 8 (𝑖 ∈ dom (iEdg‘𝐺) → (( I ↾ dom (iEdg‘𝐺))‘𝑖) = 𝑖)
1716adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ dom (iEdg‘𝐺))‘𝑖) = 𝑖)
1817fveq2d 6880 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
1912eqcomd 2741 . . . . . . . 8 (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
2019fveq1d 6878 . . . . . . 7 (𝜑 → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)))
2120adantr 480 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)))
22 grimidvtxsdg.g . . . . . . . 8 (𝜑𝐺 ∈ UHGraph)
23 eqid 2735 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
24 eqid 2735 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
2523, 24uhgrss 29043 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺))
2622, 25sylan 580 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺))
27 resiima 6063 . . . . . . 7 (((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
2826, 27syl 17 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
2918, 21, 283eqtr4d 2780 . . . . 5 ((𝜑𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))
3029ralrimiva 3132 . . . 4 (𝜑 → ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))
3115, 30jca 511 . . 3 (𝜑 → (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
32 f1oeq1 6806 . . . 4 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
33 fveq1 6875 . . . . . 6 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (𝑗𝑖) = (( I ↾ dom (iEdg‘𝐺))‘𝑖))
3433fveqeq2d 6884 . . . . 5 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
3534ralbidv 3163 . . . 4 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
3632, 35anbi12d 632 . . 3 (𝑗 = ( I ↾ dom (iEdg‘𝐺)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))) ↔ (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))))
3710, 31, 36spcedv 3577 . 2 (𝜑 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))
38 grimidvtxsdg.h . . 3 (𝜑𝐻𝑉)
39 fvex 6889 . . . . 5 (Vtx‘𝐺) ∈ V
40 resfunexg 7207 . . . . 5 ((Fun I ∧ (Vtx‘𝐺) ∈ V) → ( I ↾ (Vtx‘𝐺)) ∈ V)
415, 39, 40mp2an 692 . . . 4 ( I ↾ (Vtx‘𝐺)) ∈ V
4241a1i 11 . . 3 (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ V)
43 eqid 2735 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
44 eqid 2735 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
4523, 43, 24, 44isgrim 47895 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐻𝑉 ∧ ( I ↾ (Vtx‘𝐺)) ∈ V) → (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))))
4622, 38, 42, 45syl3anc 1373 . 2 (𝜑 → (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) ↔ (( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))))
474, 37, 46mpbir2and 713 1 (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  Vcvv 3459  wss 3926   I cid 5547  dom cdm 5654  cres 5656  cima 5657  Fun wfun 6525  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  iEdgciedg 28976  UHGraphcuhgr 29035   GraphIso cgrim 47888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-uhgr 29037  df-grim 47891
This theorem is referenced by:  grimid  47899  opstrgric  47939
  Copyright terms: Public domain W3C validator