| Step | Hyp | Ref
| Expression |
| 1 | | f1oi 6886 |
. . 3
⊢ ( I
↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) |
| 2 | | grimidvtxsdg.v |
. . . 4
⊢ (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻)) |
| 3 | 2 | f1oeq3d 6845 |
. . 3
⊢ (𝜑 → (( I ↾
(Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐺) ↔ ( I ↾ (Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))) |
| 4 | 1, 3 | mpbii 233 |
. 2
⊢ (𝜑 → ( I ↾
(Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 5 | | funi 6598 |
. . . . 5
⊢ Fun
I |
| 6 | | fvex 6919 |
. . . . . 6
⊢
(iEdg‘𝐺)
∈ V |
| 7 | 6 | dmex 7931 |
. . . . 5
⊢ dom
(iEdg‘𝐺) ∈
V |
| 8 | | resfunexg 7235 |
. . . . 5
⊢ ((Fun I
∧ dom (iEdg‘𝐺)
∈ V) → ( I ↾ dom (iEdg‘𝐺)) ∈ V) |
| 9 | 5, 7, 8 | mp2an 692 |
. . . 4
⊢ ( I
↾ dom (iEdg‘𝐺))
∈ V |
| 10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → ( I ↾ dom
(iEdg‘𝐺)) ∈
V) |
| 11 | | f1oi 6886 |
. . . . 5
⊢ ( I
↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐺) |
| 12 | | grimidvtxsdg.e |
. . . . . . 7
⊢ (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻)) |
| 13 | 12 | dmeqd 5916 |
. . . . . 6
⊢ (𝜑 → dom (iEdg‘𝐺) = dom (iEdg‘𝐻)) |
| 14 | 13 | f1oeq3d 6845 |
. . . . 5
⊢ (𝜑 → (( I ↾ dom
(iEdg‘𝐺)):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐺) ↔ ( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) |
| 15 | 11, 14 | mpbii 233 |
. . . 4
⊢ (𝜑 → ( I ↾ dom
(iEdg‘𝐺)):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) |
| 16 | | fvresi 7193 |
. . . . . . . 8
⊢ (𝑖 ∈ dom (iEdg‘𝐺) → (( I ↾ dom
(iEdg‘𝐺))‘𝑖) = 𝑖) |
| 17 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ dom (iEdg‘𝐺))‘𝑖) = 𝑖) |
| 18 | 17 | fveq2d 6910 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
| 19 | 12 | eqcomd 2743 |
. . . . . . . 8
⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) |
| 20 | 19 | fveq1d 6908 |
. . . . . . 7
⊢ (𝜑 → ((iEdg‘𝐻)‘(( I ↾ dom
(iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom
(iEdg‘𝐺))‘𝑖))) |
| 21 | 20 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐺)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖))) |
| 22 | | grimidvtxsdg.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| 23 | | eqid 2737 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 24 | | eqid 2737 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 25 | 23, 24 | uhgrss 29081 |
. . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺)) |
| 26 | 22, 25 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺)) |
| 27 | | resiima 6094 |
. . . . . . 7
⊢
(((iEdg‘𝐺)‘𝑖) ⊆ (Vtx‘𝐺) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
| 28 | 26, 27 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
| 29 | 18, 21, 28 | 3eqtr4d 2787 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))) |
| 30 | 29 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))) |
| 31 | 15, 30 | jca 511 |
. . 3
⊢ (𝜑 → (( I ↾ dom
(iEdg‘𝐺)):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))) |
| 32 | | f1oeq1 6836 |
. . . 4
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ↔ ( I
↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) |
| 33 | | fveq1 6905 |
. . . . . 6
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
(𝑗‘𝑖) = (( I ↾ dom (iEdg‘𝐺))‘𝑖)) |
| 34 | 33 | fveqeq2d 6914 |
. . . . 5
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
(((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))) |
| 35 | 34 | ralbidv 3178 |
. . . 4
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
(∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))) |
| 36 | 32, 35 | anbi12d 632 |
. . 3
⊢ (𝑗 = ( I ↾ dom
(iEdg‘𝐺)) →
((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))) ↔ (( I ↾ dom (iEdg‘𝐺)):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(( I ↾ dom (iEdg‘𝐺))‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖))))) |
| 37 | 10, 31, 36 | spcedv 3598 |
. 2
⊢ (𝜑 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))) |
| 38 | | grimidvtxsdg.h |
. . 3
⊢ (𝜑 → 𝐻 ∈ 𝑉) |
| 39 | | fvex 6919 |
. . . . 5
⊢
(Vtx‘𝐺) ∈
V |
| 40 | | resfunexg 7235 |
. . . . 5
⊢ ((Fun I
∧ (Vtx‘𝐺) ∈
V) → ( I ↾ (Vtx‘𝐺)) ∈ V) |
| 41 | 5, 39, 40 | mp2an 692 |
. . . 4
⊢ ( I
↾ (Vtx‘𝐺))
∈ V |
| 42 | 41 | a1i 11 |
. . 3
⊢ (𝜑 → ( I ↾
(Vtx‘𝐺)) ∈
V) |
| 43 | | eqid 2737 |
. . . 4
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 44 | | eqid 2737 |
. . . 4
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
| 45 | 23, 43, 24, 44 | isgrim 47868 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ 𝑉 ∧ ( I ↾ (Vtx‘𝐺)) ∈ V) → (( I ↾
(Vtx‘𝐺)) ∈
(𝐺 GraphIso 𝐻) ↔ (( I ↾
(Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))))) |
| 46 | 22, 38, 42, 45 | syl3anc 1373 |
. 2
⊢ (𝜑 → (( I ↾
(Vtx‘𝐺)) ∈
(𝐺 GraphIso 𝐻) ↔ (( I ↾
(Vtx‘𝐺)):(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (( I ↾ (Vtx‘𝐺)) “ ((iEdg‘𝐺)‘𝑖)))))) |
| 47 | 4, 37, 46 | mpbir2and 713 |
1
⊢ (𝜑 → ( I ↾
(Vtx‘𝐺)) ∈
(𝐺 GraphIso 𝐻)) |