MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipreima Structured version   Visualization version   GIF version

Theorem fipreima 9370
Description: Given a finite subset 𝐴 of the range of a function, there exists a finite subset of the domain whose image is 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
fipreima ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐹,𝑐

Proof of Theorem fipreima
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → 𝐴 ∈ Fin)
2 dfss3 3947 . . . . . 6 (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥𝐴 𝑥 ∈ ran 𝐹)
3 fvelrnb 6939 . . . . . . 7 (𝐹 Fn 𝐵 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
43ralbidv 3163 . . . . . 6 (𝐹 Fn 𝐵 → (∀𝑥𝐴 𝑥 ∈ ran 𝐹 ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥))
52, 4bitrid 283 . . . . 5 (𝐹 Fn 𝐵 → (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥))
65biimpa 476 . . . 4 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥)
763adant3 1132 . . 3 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥)
8 fveqeq2 6885 . . . 4 (𝑦 = (𝑓𝑥) → ((𝐹𝑦) = 𝑥 ↔ (𝐹‘(𝑓𝑥)) = 𝑥))
98ac6sfi 9292 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
101, 7, 9syl2anc 584 . 2 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
11 fimass 6726 . . . . . 6 (𝑓:𝐴𝐵 → (𝑓𝐴) ⊆ 𝐵)
12 vex 3463 . . . . . . . 8 𝑓 ∈ V
1312imaex 7910 . . . . . . 7 (𝑓𝐴) ∈ V
1413elpw 4579 . . . . . 6 ((𝑓𝐴) ∈ 𝒫 𝐵 ↔ (𝑓𝐴) ⊆ 𝐵)
1511, 14sylibr 234 . . . . 5 (𝑓:𝐴𝐵 → (𝑓𝐴) ∈ 𝒫 𝐵)
1615ad2antrl 728 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ 𝒫 𝐵)
17 ffun 6709 . . . . . 6 (𝑓:𝐴𝐵 → Fun 𝑓)
1817ad2antrl 728 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → Fun 𝑓)
19 simpl3 1194 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝐴 ∈ Fin)
20 imafi 9325 . . . . 5 ((Fun 𝑓𝐴 ∈ Fin) → (𝑓𝐴) ∈ Fin)
2118, 19, 20syl2anc 584 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ Fin)
2216, 21elind 4175 . . 3 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin))
23 fvco3 6978 . . . . . . . . . . 11 ((𝑓:𝐴𝐵𝑥𝐴) → ((𝐹𝑓)‘𝑥) = (𝐹‘(𝑓𝑥)))
24 fvresi 7165 . . . . . . . . . . . 12 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
2524adantl 481 . . . . . . . . . . 11 ((𝑓:𝐴𝐵𝑥𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
2623, 25eqeq12d 2751 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → (((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘(𝑓𝑥)) = 𝑥))
2726ralbidva 3161 . . . . . . . . 9 (𝑓:𝐴𝐵 → (∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
2827biimprd 248 . . . . . . . 8 (𝑓:𝐴𝐵 → (∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥 → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
2928adantl 481 . . . . . . 7 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ 𝑓:𝐴𝐵) → (∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥 → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
3029impr 454 . . . . . 6 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥))
31 simpl1 1192 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝐹 Fn 𝐵)
32 ffn 6706 . . . . . . . . 9 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
3332ad2antrl 728 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝑓 Fn 𝐴)
34 frn 6713 . . . . . . . . 9 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
3534ad2antrl 728 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ran 𝑓𝐵)
36 fnco 6656 . . . . . . . 8 ((𝐹 Fn 𝐵𝑓 Fn 𝐴 ∧ ran 𝑓𝐵) → (𝐹𝑓) Fn 𝐴)
3731, 33, 35, 36syl3anc 1373 . . . . . . 7 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹𝑓) Fn 𝐴)
38 fnresi 6667 . . . . . . 7 ( I ↾ 𝐴) Fn 𝐴
39 eqfnfv 7021 . . . . . . 7 (((𝐹𝑓) Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → ((𝐹𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
4037, 38, 39sylancl 586 . . . . . 6 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ((𝐹𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
4130, 40mpbird 257 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹𝑓) = ( I ↾ 𝐴))
4241imaeq1d 6046 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ((𝐹𝑓) “ 𝐴) = (( I ↾ 𝐴) “ 𝐴))
43 imaco 6240 . . . 4 ((𝐹𝑓) “ 𝐴) = (𝐹 “ (𝑓𝐴))
44 ssid 3981 . . . . 5 𝐴𝐴
45 resiima 6063 . . . . 5 (𝐴𝐴 → (( I ↾ 𝐴) “ 𝐴) = 𝐴)
4644, 45ax-mp 5 . . . 4 (( I ↾ 𝐴) “ 𝐴) = 𝐴
4742, 43, 463eqtr3g 2793 . . 3 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹 “ (𝑓𝐴)) = 𝐴)
48 imaeq2 6043 . . . . 5 (𝑐 = (𝑓𝐴) → (𝐹𝑐) = (𝐹 “ (𝑓𝐴)))
4948eqeq1d 2737 . . . 4 (𝑐 = (𝑓𝐴) → ((𝐹𝑐) = 𝐴 ↔ (𝐹 “ (𝑓𝐴)) = 𝐴))
5049rspcev 3601 . . 3 (((𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝐹 “ (𝑓𝐴)) = 𝐴) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
5122, 47, 50syl2anc 584 . 2 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
5210, 51exlimddv 1935 1 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926  𝒫 cpw 4575   I cid 5547  ran crn 5655  cres 5656  cima 5657  ccom 5658  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-en 8960  df-dom 8961  df-fin 8963
This theorem is referenced by:  fodomfi2  10074  cmpfi  23346  elrfirn  42718  lmhmfgsplit  43110  hbtlem6  43153
  Copyright terms: Public domain W3C validator