MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipreima Structured version   Visualization version   GIF version

Theorem fipreima 8960
Description: Given a finite subset 𝐴 of the range of a function, there exists a finite subset of the domain whose image is 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
fipreima ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐹,𝑐

Proof of Theorem fipreima
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1140 . . 3 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → 𝐴 ∈ Fin)
2 dfss3 3875 . . . . . 6 (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥𝐴 𝑥 ∈ ran 𝐹)
3 fvelrnb 6751 . . . . . . 7 (𝐹 Fn 𝐵 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
43ralbidv 3108 . . . . . 6 (𝐹 Fn 𝐵 → (∀𝑥𝐴 𝑥 ∈ ran 𝐹 ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥))
52, 4syl5bb 286 . . . . 5 (𝐹 Fn 𝐵 → (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥))
65biimpa 480 . . . 4 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥)
763adant3 1134 . . 3 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥)
8 fveqeq2 6704 . . . 4 (𝑦 = (𝑓𝑥) → ((𝐹𝑦) = 𝑥 ↔ (𝐹‘(𝑓𝑥)) = 𝑥))
98ac6sfi 8893 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
101, 7, 9syl2anc 587 . 2 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
11 fimass 6544 . . . . . 6 (𝑓:𝐴𝐵 → (𝑓𝐴) ⊆ 𝐵)
12 vex 3402 . . . . . . . 8 𝑓 ∈ V
1312imaex 7672 . . . . . . 7 (𝑓𝐴) ∈ V
1413elpw 4503 . . . . . 6 ((𝑓𝐴) ∈ 𝒫 𝐵 ↔ (𝑓𝐴) ⊆ 𝐵)
1511, 14sylibr 237 . . . . 5 (𝑓:𝐴𝐵 → (𝑓𝐴) ∈ 𝒫 𝐵)
1615ad2antrl 728 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ 𝒫 𝐵)
17 ffun 6526 . . . . . 6 (𝑓:𝐴𝐵 → Fun 𝑓)
1817ad2antrl 728 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → Fun 𝑓)
19 simpl3 1195 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝐴 ∈ Fin)
20 imafi 8830 . . . . 5 ((Fun 𝑓𝐴 ∈ Fin) → (𝑓𝐴) ∈ Fin)
2118, 19, 20syl2anc 587 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ Fin)
2216, 21elind 4094 . . 3 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin))
23 fvco3 6788 . . . . . . . . . . 11 ((𝑓:𝐴𝐵𝑥𝐴) → ((𝐹𝑓)‘𝑥) = (𝐹‘(𝑓𝑥)))
24 fvresi 6966 . . . . . . . . . . . 12 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
2524adantl 485 . . . . . . . . . . 11 ((𝑓:𝐴𝐵𝑥𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
2623, 25eqeq12d 2752 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → (((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘(𝑓𝑥)) = 𝑥))
2726ralbidva 3107 . . . . . . . . 9 (𝑓:𝐴𝐵 → (∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
2827biimprd 251 . . . . . . . 8 (𝑓:𝐴𝐵 → (∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥 → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
2928adantl 485 . . . . . . 7 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ 𝑓:𝐴𝐵) → (∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥 → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
3029impr 458 . . . . . 6 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥))
31 simpl1 1193 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝐹 Fn 𝐵)
32 ffn 6523 . . . . . . . . 9 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
3332ad2antrl 728 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝑓 Fn 𝐴)
34 frn 6530 . . . . . . . . 9 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
3534ad2antrl 728 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ran 𝑓𝐵)
36 fnco 6472 . . . . . . . 8 ((𝐹 Fn 𝐵𝑓 Fn 𝐴 ∧ ran 𝑓𝐵) → (𝐹𝑓) Fn 𝐴)
3731, 33, 35, 36syl3anc 1373 . . . . . . 7 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹𝑓) Fn 𝐴)
38 fnresi 6484 . . . . . . 7 ( I ↾ 𝐴) Fn 𝐴
39 eqfnfv 6830 . . . . . . 7 (((𝐹𝑓) Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → ((𝐹𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
4037, 38, 39sylancl 589 . . . . . 6 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ((𝐹𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
4130, 40mpbird 260 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹𝑓) = ( I ↾ 𝐴))
4241imaeq1d 5913 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ((𝐹𝑓) “ 𝐴) = (( I ↾ 𝐴) “ 𝐴))
43 imaco 6095 . . . 4 ((𝐹𝑓) “ 𝐴) = (𝐹 “ (𝑓𝐴))
44 ssid 3909 . . . . 5 𝐴𝐴
45 resiima 5929 . . . . 5 (𝐴𝐴 → (( I ↾ 𝐴) “ 𝐴) = 𝐴)
4644, 45ax-mp 5 . . . 4 (( I ↾ 𝐴) “ 𝐴) = 𝐴
4742, 43, 463eqtr3g 2794 . . 3 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹 “ (𝑓𝐴)) = 𝐴)
48 imaeq2 5910 . . . . 5 (𝑐 = (𝑓𝐴) → (𝐹𝑐) = (𝐹 “ (𝑓𝐴)))
4948eqeq1d 2738 . . . 4 (𝑐 = (𝑓𝐴) → ((𝐹𝑐) = 𝐴 ↔ (𝐹 “ (𝑓𝐴)) = 𝐴))
5049rspcev 3527 . . 3 (((𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝐹 “ (𝑓𝐴)) = 𝐴) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
5122, 47, 50syl2anc 587 . 2 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
5210, 51exlimddv 1943 1 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wral 3051  wrex 3052  cin 3852  wss 3853  𝒫 cpw 4499   I cid 5439  ran crn 5537  cres 5538  cima 5539  ccom 5540  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  Fincfn 8604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-1o 8180  df-en 8605  df-fin 8608
This theorem is referenced by:  fodomfi2  9639  cmpfi  22259  elrfirn  40161  lmhmfgsplit  40555  hbtlem6  40598
  Copyright terms: Public domain W3C validator