Step | Hyp | Ref
| Expression |
1 | | simp3 1137 |
. . 3
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) |
2 | | dfss3 3909 |
. . . . . 6
⊢ (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ ran 𝐹) |
3 | | fvelrnb 6830 |
. . . . . . 7
⊢ (𝐹 Fn 𝐵 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) |
4 | 3 | ralbidv 3112 |
. . . . . 6
⊢ (𝐹 Fn 𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ ran 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) |
5 | 2, 4 | bitrid 282 |
. . . . 5
⊢ (𝐹 Fn 𝐵 → (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) |
6 | 5 | biimpa 477 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥) |
7 | 6 | 3adant3 1131 |
. . 3
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥) |
8 | | fveqeq2 6783 |
. . . 4
⊢ (𝑦 = (𝑓‘𝑥) → ((𝐹‘𝑦) = 𝑥 ↔ (𝐹‘(𝑓‘𝑥)) = 𝑥)) |
9 | 8 | ac6sfi 9058 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) |
10 | 1, 7, 9 | syl2anc 584 |
. 2
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) |
11 | | fimass 6621 |
. . . . . 6
⊢ (𝑓:𝐴⟶𝐵 → (𝑓 “ 𝐴) ⊆ 𝐵) |
12 | | vex 3436 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
13 | 12 | imaex 7763 |
. . . . . . 7
⊢ (𝑓 “ 𝐴) ∈ V |
14 | 13 | elpw 4537 |
. . . . . 6
⊢ ((𝑓 “ 𝐴) ∈ 𝒫 𝐵 ↔ (𝑓 “ 𝐴) ⊆ 𝐵) |
15 | 11, 14 | sylibr 233 |
. . . . 5
⊢ (𝑓:𝐴⟶𝐵 → (𝑓 “ 𝐴) ∈ 𝒫 𝐵) |
16 | 15 | ad2antrl 725 |
. . . 4
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → (𝑓 “ 𝐴) ∈ 𝒫 𝐵) |
17 | | ffun 6603 |
. . . . . 6
⊢ (𝑓:𝐴⟶𝐵 → Fun 𝑓) |
18 | 17 | ad2antrl 725 |
. . . . 5
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → Fun 𝑓) |
19 | | simpl3 1192 |
. . . . 5
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → 𝐴 ∈ Fin) |
20 | | imafi 8958 |
. . . . 5
⊢ ((Fun
𝑓 ∧ 𝐴 ∈ Fin) → (𝑓 “ 𝐴) ∈ Fin) |
21 | 18, 19, 20 | syl2anc 584 |
. . . 4
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → (𝑓 “ 𝐴) ∈ Fin) |
22 | 16, 21 | elind 4128 |
. . 3
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → (𝑓 “ 𝐴) ∈ (𝒫 𝐵 ∩ Fin)) |
23 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝑓)‘𝑥) = (𝐹‘(𝑓‘𝑥))) |
24 | | fvresi 7045 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
25 | 24 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
26 | 23, 25 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘ 𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘(𝑓‘𝑥)) = 𝑥)) |
27 | 26 | ralbidva 3111 |
. . . . . . . . 9
⊢ (𝑓:𝐴⟶𝐵 → (∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) |
28 | 27 | biimprd 247 |
. . . . . . . 8
⊢ (𝑓:𝐴⟶𝐵 → (∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥 → ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
29 | 28 | adantl 482 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝑓:𝐴⟶𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥 → ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
30 | 29 | impr 455 |
. . . . . 6
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)) |
31 | | simpl1 1190 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → 𝐹 Fn 𝐵) |
32 | | ffn 6600 |
. . . . . . . . 9
⊢ (𝑓:𝐴⟶𝐵 → 𝑓 Fn 𝐴) |
33 | 32 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → 𝑓 Fn 𝐴) |
34 | | frn 6607 |
. . . . . . . . 9
⊢ (𝑓:𝐴⟶𝐵 → ran 𝑓 ⊆ 𝐵) |
35 | 34 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → ran 𝑓 ⊆ 𝐵) |
36 | | fnco 6549 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐵 ∧ 𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐵) → (𝐹 ∘ 𝑓) Fn 𝐴) |
37 | 31, 33, 35, 36 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → (𝐹 ∘ 𝑓) Fn 𝐴) |
38 | | fnresi 6561 |
. . . . . . 7
⊢ ( I
↾ 𝐴) Fn 𝐴 |
39 | | eqfnfv 6909 |
. . . . . . 7
⊢ (((𝐹 ∘ 𝑓) Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → ((𝐹 ∘ 𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
40 | 37, 38, 39 | sylancl 586 |
. . . . . 6
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → ((𝐹 ∘ 𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
41 | 30, 40 | mpbird 256 |
. . . . 5
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → (𝐹 ∘ 𝑓) = ( I ↾ 𝐴)) |
42 | 41 | imaeq1d 5968 |
. . . 4
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → ((𝐹 ∘ 𝑓) “ 𝐴) = (( I ↾ 𝐴) “ 𝐴)) |
43 | | imaco 6155 |
. . . 4
⊢ ((𝐹 ∘ 𝑓) “ 𝐴) = (𝐹 “ (𝑓 “ 𝐴)) |
44 | | ssid 3943 |
. . . . 5
⊢ 𝐴 ⊆ 𝐴 |
45 | | resiima 5984 |
. . . . 5
⊢ (𝐴 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐴) = 𝐴) |
46 | 44, 45 | ax-mp 5 |
. . . 4
⊢ (( I
↾ 𝐴) “ 𝐴) = 𝐴 |
47 | 42, 43, 46 | 3eqtr3g 2801 |
. . 3
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → (𝐹 “ (𝑓 “ 𝐴)) = 𝐴) |
48 | | imaeq2 5965 |
. . . . 5
⊢ (𝑐 = (𝑓 “ 𝐴) → (𝐹 “ 𝑐) = (𝐹 “ (𝑓 “ 𝐴))) |
49 | 48 | eqeq1d 2740 |
. . . 4
⊢ (𝑐 = (𝑓 “ 𝐴) → ((𝐹 “ 𝑐) = 𝐴 ↔ (𝐹 “ (𝑓 “ 𝐴)) = 𝐴)) |
50 | 49 | rspcev 3561 |
. . 3
⊢ (((𝑓 “ 𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝐹 “ (𝑓 “ 𝐴)) = 𝐴) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹 “ 𝑐) = 𝐴) |
51 | 22, 47, 50 | syl2anc 584 |
. 2
⊢ (((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) ∧ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝑓‘𝑥)) = 𝑥)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹 “ 𝑐) = 𝐴) |
52 | 10, 51 | exlimddv 1938 |
1
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹 “ 𝑐) = 𝐴) |