MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipreima Structured version   Visualization version   GIF version

Theorem fipreima 9309
Description: Given a finite subset 𝐴 of the range of a function, there exists a finite subset of the domain whose image is 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
fipreima ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐹,𝑐

Proof of Theorem fipreima
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → 𝐴 ∈ Fin)
2 dfss3 3935 . . . . . 6 (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥𝐴 𝑥 ∈ ran 𝐹)
3 fvelrnb 6908 . . . . . . 7 (𝐹 Fn 𝐵 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
43ralbidv 3170 . . . . . 6 (𝐹 Fn 𝐵 → (∀𝑥𝐴 𝑥 ∈ ran 𝐹 ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥))
52, 4bitrid 282 . . . . 5 (𝐹 Fn 𝐵 → (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥))
65biimpa 477 . . . 4 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥)
763adant3 1132 . . 3 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥)
8 fveqeq2 6856 . . . 4 (𝑦 = (𝑓𝑥) → ((𝐹𝑦) = 𝑥 ↔ (𝐹‘(𝑓𝑥)) = 𝑥))
98ac6sfi 9238 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
101, 7, 9syl2anc 584 . 2 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
11 fimass 6694 . . . . . 6 (𝑓:𝐴𝐵 → (𝑓𝐴) ⊆ 𝐵)
12 vex 3450 . . . . . . . 8 𝑓 ∈ V
1312imaex 7858 . . . . . . 7 (𝑓𝐴) ∈ V
1413elpw 4569 . . . . . 6 ((𝑓𝐴) ∈ 𝒫 𝐵 ↔ (𝑓𝐴) ⊆ 𝐵)
1511, 14sylibr 233 . . . . 5 (𝑓:𝐴𝐵 → (𝑓𝐴) ∈ 𝒫 𝐵)
1615ad2antrl 726 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ 𝒫 𝐵)
17 ffun 6676 . . . . . 6 (𝑓:𝐴𝐵 → Fun 𝑓)
1817ad2antrl 726 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → Fun 𝑓)
19 simpl3 1193 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝐴 ∈ Fin)
20 imafi 9126 . . . . 5 ((Fun 𝑓𝐴 ∈ Fin) → (𝑓𝐴) ∈ Fin)
2118, 19, 20syl2anc 584 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ Fin)
2216, 21elind 4159 . . 3 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin))
23 fvco3 6945 . . . . . . . . . . 11 ((𝑓:𝐴𝐵𝑥𝐴) → ((𝐹𝑓)‘𝑥) = (𝐹‘(𝑓𝑥)))
24 fvresi 7124 . . . . . . . . . . . 12 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
2524adantl 482 . . . . . . . . . . 11 ((𝑓:𝐴𝐵𝑥𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
2623, 25eqeq12d 2747 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → (((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘(𝑓𝑥)) = 𝑥))
2726ralbidva 3168 . . . . . . . . 9 (𝑓:𝐴𝐵 → (∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
2827biimprd 247 . . . . . . . 8 (𝑓:𝐴𝐵 → (∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥 → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
2928adantl 482 . . . . . . 7 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ 𝑓:𝐴𝐵) → (∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥 → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
3029impr 455 . . . . . 6 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥))
31 simpl1 1191 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝐹 Fn 𝐵)
32 ffn 6673 . . . . . . . . 9 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
3332ad2antrl 726 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝑓 Fn 𝐴)
34 frn 6680 . . . . . . . . 9 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
3534ad2antrl 726 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ran 𝑓𝐵)
36 fnco 6623 . . . . . . . 8 ((𝐹 Fn 𝐵𝑓 Fn 𝐴 ∧ ran 𝑓𝐵) → (𝐹𝑓) Fn 𝐴)
3731, 33, 35, 36syl3anc 1371 . . . . . . 7 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹𝑓) Fn 𝐴)
38 fnresi 6635 . . . . . . 7 ( I ↾ 𝐴) Fn 𝐴
39 eqfnfv 6987 . . . . . . 7 (((𝐹𝑓) Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → ((𝐹𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
4037, 38, 39sylancl 586 . . . . . 6 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ((𝐹𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
4130, 40mpbird 256 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹𝑓) = ( I ↾ 𝐴))
4241imaeq1d 6017 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ((𝐹𝑓) “ 𝐴) = (( I ↾ 𝐴) “ 𝐴))
43 imaco 6208 . . . 4 ((𝐹𝑓) “ 𝐴) = (𝐹 “ (𝑓𝐴))
44 ssid 3969 . . . . 5 𝐴𝐴
45 resiima 6033 . . . . 5 (𝐴𝐴 → (( I ↾ 𝐴) “ 𝐴) = 𝐴)
4644, 45ax-mp 5 . . . 4 (( I ↾ 𝐴) “ 𝐴) = 𝐴
4742, 43, 463eqtr3g 2794 . . 3 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹 “ (𝑓𝐴)) = 𝐴)
48 imaeq2 6014 . . . . 5 (𝑐 = (𝑓𝐴) → (𝐹𝑐) = (𝐹 “ (𝑓𝐴)))
4948eqeq1d 2733 . . . 4 (𝑐 = (𝑓𝐴) → ((𝐹𝑐) = 𝐴 ↔ (𝐹 “ (𝑓𝐴)) = 𝐴))
5049rspcev 3582 . . 3 (((𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝐹 “ (𝑓𝐴)) = 𝐴) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
5122, 47, 50syl2anc 584 . 2 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
5210, 51exlimddv 1938 1 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3060  wrex 3069  cin 3912  wss 3913  𝒫 cpw 4565   I cid 5535  ran crn 5639  cres 5640  cima 5641  ccom 5642  Fun wfun 6495   Fn wfn 6496  wf 6497  cfv 6501  Fincfn 8890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-en 8891  df-fin 8894
This theorem is referenced by:  fodomfi2  10005  cmpfi  22796  elrfirn  41076  lmhmfgsplit  41471  hbtlem6  41514
  Copyright terms: Public domain W3C validator