Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellspds Structured version   Visualization version   GIF version

Theorem ellspds 33339
Description: Variation on ellspd 21711. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
ellspds.n 𝑁 = (LSpan‘𝑀)
ellspds.v 𝐵 = (Base‘𝑀)
ellspds.k 𝐾 = (Base‘𝑆)
ellspds.s 𝑆 = (Scalar‘𝑀)
ellspds.z 0 = (0g𝑆)
ellspds.t · = ( ·𝑠𝑀)
ellspds.m (𝜑𝑀 ∈ LMod)
ellspds.1 (𝜑𝑉𝐵)
Assertion
Ref Expression
ellspds (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Distinct variable groups:   𝐵,𝑎   𝐾,𝑎,𝑣   𝑁,𝑎   𝑀,𝑎   𝑆,𝑎   𝑋,𝑎   𝑉,𝑎,𝑣   𝜑,𝑎,𝑣   0 ,𝑎   · ,𝑎,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑆(𝑣)   𝑀(𝑣)   𝑁(𝑣)   𝑋(𝑣)   0 (𝑣)

Proof of Theorem ellspds
StepHypRef Expression
1 ellspds.n . . 3 𝑁 = (LSpan‘𝑀)
2 ellspds.v . . 3 𝐵 = (Base‘𝑀)
3 ellspds.k . . 3 𝐾 = (Base‘𝑆)
4 ellspds.s . . 3 𝑆 = (Scalar‘𝑀)
5 ellspds.z . . 3 0 = (0g𝑆)
6 ellspds.t . . 3 · = ( ·𝑠𝑀)
7 f1oi 6838 . . . . 5 ( I ↾ 𝑉):𝑉1-1-onto𝑉
8 f1of 6800 . . . . 5 (( I ↾ 𝑉):𝑉1-1-onto𝑉 → ( I ↾ 𝑉):𝑉𝑉)
97, 8mp1i 13 . . . 4 (𝜑 → ( I ↾ 𝑉):𝑉𝑉)
10 ellspds.1 . . . 4 (𝜑𝑉𝐵)
119, 10fssd 6705 . . 3 (𝜑 → ( I ↾ 𝑉):𝑉𝐵)
12 ellspds.m . . 3 (𝜑𝑀 ∈ LMod)
132fvexi 6872 . . . . 5 𝐵 ∈ V
1413a1i 11 . . . 4 (𝜑𝐵 ∈ V)
1514, 10ssexd 5279 . . 3 (𝜑𝑉 ∈ V)
161, 2, 3, 4, 5, 6, 11, 12, 15ellspd 21711 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))))))
17 ssid 3969 . . . . 5 𝑉𝑉
18 resiima 6047 . . . . 5 (𝑉𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
1917, 18mp1i 13 . . . 4 (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
2019fveq2d 6862 . . 3 (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁𝑉))
2120eleq2d 2814 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁𝑉)))
22 elmapfn 8838 . . . . . . . 8 (𝑎 ∈ (𝐾m 𝑉) → 𝑎 Fn 𝑉)
2322adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑎 Fn 𝑉)
247, 8mp1i 13 . . . . . . . 8 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉):𝑉𝑉)
2524ffnd 6689 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉) Fn 𝑉)
2615adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑉 ∈ V)
27 inidm 4190 . . . . . . 7 (𝑉𝑉) = 𝑉
28 eqidd 2730 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (𝑎𝑣) = (𝑎𝑣))
29 fvresi 7147 . . . . . . . 8 (𝑣𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3029adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3123, 25, 26, 26, 27, 28, 30offval 7662 . . . . . 6 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑎f · ( I ↾ 𝑉)) = (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))
3231oveq2d 7403 . . . . 5 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))
3332eqeq2d 2740 . . . 4 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))))
3433anbi2d 630 . . 3 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ((𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3534rexbidva 3155 . 2 (𝜑 → (∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3616, 21, 353bitr3d 309 1 (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188   I cid 5532  cres 5640  cima 5641   Fn wfn 6506  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799   finSupp cfsupp 9312  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  LModclmod 20766  LSpanclspn 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-nzr 20422  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lbs 20982  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-uvc 21692
This theorem is referenced by:  elrsp  33343  lbslsp  33348  lbsdiflsp0  33622  fedgmul  33627  fldextrspunlsplem  33668  fldextrspunlsp  33669
  Copyright terms: Public domain W3C validator