Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellspds | Structured version Visualization version GIF version |
Description: Variation on ellspd 21089. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
ellspds.n | ⊢ 𝑁 = (LSpan‘𝑀) |
ellspds.v | ⊢ 𝐵 = (Base‘𝑀) |
ellspds.k | ⊢ 𝐾 = (Base‘𝑆) |
ellspds.s | ⊢ 𝑆 = (Scalar‘𝑀) |
ellspds.z | ⊢ 0 = (0g‘𝑆) |
ellspds.t | ⊢ · = ( ·𝑠 ‘𝑀) |
ellspds.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
ellspds.1 | ⊢ (𝜑 → 𝑉 ⊆ 𝐵) |
Ref | Expression |
---|---|
ellspds | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspds.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑀) | |
2 | ellspds.v | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
3 | ellspds.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
4 | ellspds.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | ellspds.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
6 | ellspds.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑀) | |
7 | f1oi 6791 | . . . . 5 ⊢ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉 | |
8 | f1of 6753 | . . . . 5 ⊢ (( I ↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | |
9 | 7, 8 | mp1i 13 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝑉) |
10 | ellspds.1 | . . . 4 ⊢ (𝜑 → 𝑉 ⊆ 𝐵) | |
11 | 9, 10 | fssd 6655 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝐵) |
12 | ellspds.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
13 | 2 | fvexi 6825 | . . . . 5 ⊢ 𝐵 ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
15 | 14, 10 | ssexd 5262 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
16 | 1, 2, 3, 4, 5, 6, 11, 12, 15 | ellspd 21089 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))))) |
17 | ssid 3952 | . . . . 5 ⊢ 𝑉 ⊆ 𝑉 | |
18 | resiima 6001 | . . . . 5 ⊢ (𝑉 ⊆ 𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) | |
19 | 17, 18 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) |
20 | 19 | fveq2d 6815 | . . 3 ⊢ (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁‘𝑉)) |
21 | 20 | eleq2d 2822 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁‘𝑉))) |
22 | elmapfn 8702 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝐾 ↑m 𝑉) → 𝑎 Fn 𝑉) | |
23 | 22 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → 𝑎 Fn 𝑉) |
24 | 7, 8 | mp1i 13 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ( I ↾ 𝑉):𝑉⟶𝑉) |
25 | 24 | ffnd 6638 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ( I ↾ 𝑉) Fn 𝑉) |
26 | 15 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → 𝑉 ∈ V) |
27 | inidm 4162 | . . . . . . 7 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
28 | eqidd 2737 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑎‘𝑣) = (𝑎‘𝑣)) | |
29 | fvresi 7084 | . . . . . . . 8 ⊢ (𝑣 ∈ 𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣) | |
30 | 29 | adantl 482 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) ∧ 𝑣 ∈ 𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣) |
31 | 23, 25, 26, 26, 27, 28, 30 | offval 7583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑎 ∘f · ( I ↾ 𝑉)) = (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) |
32 | 31 | oveq2d 7332 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))) |
33 | 32 | eqeq2d 2747 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))))) |
34 | 33 | anbi2d 629 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ((𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
35 | 34 | rexbidva 3169 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
36 | 16, 21, 35 | 3bitr3d 308 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 Vcvv 3440 ⊆ wss 3896 class class class wbr 5086 ↦ cmpt 5169 I cid 5505 ↾ cres 5609 “ cima 5610 Fn wfn 6460 ⟶wf 6461 –1-1-onto→wf1o 6464 ‘cfv 6465 (class class class)co 7316 ∘f cof 7572 ↑m cmap 8664 finSupp cfsupp 9204 Basecbs 16986 Scalarcsca 17039 ·𝑠 cvsca 17040 0gc0g 17224 Σg cgsu 17225 LModclmod 20203 LSpanclspn 20313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-om 7759 df-1st 7877 df-2nd 7878 df-supp 8026 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-ixp 8735 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fsupp 9205 df-sup 9277 df-oi 9345 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-fz 13319 df-fzo 13462 df-seq 13801 df-hash 14124 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-sca 17052 df-vsca 17053 df-ip 17054 df-tset 17055 df-ple 17056 df-ds 17058 df-hom 17060 df-cco 17061 df-0g 17226 df-gsum 17227 df-prds 17232 df-pws 17234 df-mre 17369 df-mrc 17370 df-acs 17372 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-mhm 18504 df-submnd 18505 df-grp 18653 df-minusg 18654 df-sbg 18655 df-mulg 18774 df-subg 18825 df-ghm 18905 df-cntz 18996 df-cmn 19460 df-abl 19461 df-mgp 19793 df-ur 19810 df-ring 19857 df-subrg 20101 df-lmod 20205 df-lss 20274 df-lsp 20314 df-lmhm 20364 df-lbs 20417 df-sra 20514 df-rgmod 20515 df-nzr 20609 df-dsmm 21019 df-frlm 21034 df-uvc 21070 |
This theorem is referenced by: elrsp 31704 lbslsp 31707 lbsdiflsp0 31843 fedgmul 31848 |
Copyright terms: Public domain | W3C validator |