Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellspds Structured version   Visualization version   GIF version

Theorem ellspds 31699
Description: Variation on ellspd 21089. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
ellspds.n 𝑁 = (LSpan‘𝑀)
ellspds.v 𝐵 = (Base‘𝑀)
ellspds.k 𝐾 = (Base‘𝑆)
ellspds.s 𝑆 = (Scalar‘𝑀)
ellspds.z 0 = (0g𝑆)
ellspds.t · = ( ·𝑠𝑀)
ellspds.m (𝜑𝑀 ∈ LMod)
ellspds.1 (𝜑𝑉𝐵)
Assertion
Ref Expression
ellspds (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Distinct variable groups:   𝐵,𝑎   𝐾,𝑎,𝑣   𝑁,𝑎   𝑀,𝑎   𝑆,𝑎   𝑋,𝑎   𝑉,𝑎,𝑣   𝜑,𝑎,𝑣   0 ,𝑎   · ,𝑎,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑆(𝑣)   𝑀(𝑣)   𝑁(𝑣)   𝑋(𝑣)   0 (𝑣)

Proof of Theorem ellspds
StepHypRef Expression
1 ellspds.n . . 3 𝑁 = (LSpan‘𝑀)
2 ellspds.v . . 3 𝐵 = (Base‘𝑀)
3 ellspds.k . . 3 𝐾 = (Base‘𝑆)
4 ellspds.s . . 3 𝑆 = (Scalar‘𝑀)
5 ellspds.z . . 3 0 = (0g𝑆)
6 ellspds.t . . 3 · = ( ·𝑠𝑀)
7 f1oi 6791 . . . . 5 ( I ↾ 𝑉):𝑉1-1-onto𝑉
8 f1of 6753 . . . . 5 (( I ↾ 𝑉):𝑉1-1-onto𝑉 → ( I ↾ 𝑉):𝑉𝑉)
97, 8mp1i 13 . . . 4 (𝜑 → ( I ↾ 𝑉):𝑉𝑉)
10 ellspds.1 . . . 4 (𝜑𝑉𝐵)
119, 10fssd 6655 . . 3 (𝜑 → ( I ↾ 𝑉):𝑉𝐵)
12 ellspds.m . . 3 (𝜑𝑀 ∈ LMod)
132fvexi 6825 . . . . 5 𝐵 ∈ V
1413a1i 11 . . . 4 (𝜑𝐵 ∈ V)
1514, 10ssexd 5262 . . 3 (𝜑𝑉 ∈ V)
161, 2, 3, 4, 5, 6, 11, 12, 15ellspd 21089 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))))))
17 ssid 3952 . . . . 5 𝑉𝑉
18 resiima 6001 . . . . 5 (𝑉𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
1917, 18mp1i 13 . . . 4 (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
2019fveq2d 6815 . . 3 (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁𝑉))
2120eleq2d 2822 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁𝑉)))
22 elmapfn 8702 . . . . . . . 8 (𝑎 ∈ (𝐾m 𝑉) → 𝑎 Fn 𝑉)
2322adantl 482 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑎 Fn 𝑉)
247, 8mp1i 13 . . . . . . . 8 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉):𝑉𝑉)
2524ffnd 6638 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉) Fn 𝑉)
2615adantr 481 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑉 ∈ V)
27 inidm 4162 . . . . . . 7 (𝑉𝑉) = 𝑉
28 eqidd 2737 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (𝑎𝑣) = (𝑎𝑣))
29 fvresi 7084 . . . . . . . 8 (𝑣𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3029adantl 482 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3123, 25, 26, 26, 27, 28, 30offval 7583 . . . . . 6 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑎f · ( I ↾ 𝑉)) = (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))
3231oveq2d 7332 . . . . 5 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))
3332eqeq2d 2747 . . . 4 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))))
3433anbi2d 629 . . 3 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ((𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3534rexbidva 3169 . 2 (𝜑 → (∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3616, 21, 353bitr3d 308 1 (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wrex 3070  Vcvv 3440  wss 3896   class class class wbr 5086  cmpt 5169   I cid 5505  cres 5609  cima 5610   Fn wfn 6460  wf 6461  1-1-ontowf1o 6464  cfv 6465  (class class class)co 7316  f cof 7572  m cmap 8664   finSupp cfsupp 9204  Basecbs 16986  Scalarcsca 17039   ·𝑠 cvsca 17040  0gc0g 17224   Σg cgsu 17225  LModclmod 20203  LSpanclspn 20313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-of 7574  df-om 7759  df-1st 7877  df-2nd 7878  df-supp 8026  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-map 8666  df-ixp 8735  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-fsupp 9205  df-sup 9277  df-oi 9345  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-5 12118  df-6 12119  df-7 12120  df-8 12121  df-9 12122  df-n0 12313  df-z 12399  df-dec 12517  df-uz 12662  df-fz 13319  df-fzo 13462  df-seq 13801  df-hash 14124  df-struct 16922  df-sets 16939  df-slot 16957  df-ndx 16969  df-base 16987  df-ress 17016  df-plusg 17049  df-mulr 17050  df-sca 17052  df-vsca 17053  df-ip 17054  df-tset 17055  df-ple 17056  df-ds 17058  df-hom 17060  df-cco 17061  df-0g 17226  df-gsum 17227  df-prds 17232  df-pws 17234  df-mre 17369  df-mrc 17370  df-acs 17372  df-mgm 18400  df-sgrp 18449  df-mnd 18460  df-mhm 18504  df-submnd 18505  df-grp 18653  df-minusg 18654  df-sbg 18655  df-mulg 18774  df-subg 18825  df-ghm 18905  df-cntz 18996  df-cmn 19460  df-abl 19461  df-mgp 19793  df-ur 19810  df-ring 19857  df-subrg 20101  df-lmod 20205  df-lss 20274  df-lsp 20314  df-lmhm 20364  df-lbs 20417  df-sra 20514  df-rgmod 20515  df-nzr 20609  df-dsmm 21019  df-frlm 21034  df-uvc 21070
This theorem is referenced by:  elrsp  31704  lbslsp  31707  lbsdiflsp0  31843  fedgmul  31848
  Copyright terms: Public domain W3C validator