| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellspds | Structured version Visualization version GIF version | ||
| Description: Variation on ellspd 21740. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| ellspds.n | ⊢ 𝑁 = (LSpan‘𝑀) |
| ellspds.v | ⊢ 𝐵 = (Base‘𝑀) |
| ellspds.k | ⊢ 𝐾 = (Base‘𝑆) |
| ellspds.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| ellspds.z | ⊢ 0 = (0g‘𝑆) |
| ellspds.t | ⊢ · = ( ·𝑠 ‘𝑀) |
| ellspds.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| ellspds.1 | ⊢ (𝜑 → 𝑉 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ellspds | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspds.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑀) | |
| 2 | ellspds.v | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 3 | ellspds.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
| 4 | ellspds.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 5 | ellspds.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
| 6 | ellspds.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 7 | f1oi 6801 | . . . . 5 ⊢ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉 | |
| 8 | f1of 6763 | . . . . 5 ⊢ (( I ↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | |
| 9 | 7, 8 | mp1i 13 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝑉) |
| 10 | ellspds.1 | . . . 4 ⊢ (𝜑 → 𝑉 ⊆ 𝐵) | |
| 11 | 9, 10 | fssd 6668 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝐵) |
| 12 | ellspds.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 13 | 2 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 15 | 14, 10 | ssexd 5262 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 16 | 1, 2, 3, 4, 5, 6, 11, 12, 15 | ellspd 21740 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))))) |
| 17 | ssid 3957 | . . . . 5 ⊢ 𝑉 ⊆ 𝑉 | |
| 18 | resiima 6025 | . . . . 5 ⊢ (𝑉 ⊆ 𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) | |
| 19 | 17, 18 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) |
| 20 | 19 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁‘𝑉)) |
| 21 | 20 | eleq2d 2817 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁‘𝑉))) |
| 22 | elmapfn 8789 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝐾 ↑m 𝑉) → 𝑎 Fn 𝑉) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → 𝑎 Fn 𝑉) |
| 24 | 7, 8 | mp1i 13 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ( I ↾ 𝑉):𝑉⟶𝑉) |
| 25 | 24 | ffnd 6652 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ( I ↾ 𝑉) Fn 𝑉) |
| 26 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → 𝑉 ∈ V) |
| 27 | inidm 4177 | . . . . . . 7 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
| 28 | eqidd 2732 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑎‘𝑣) = (𝑎‘𝑣)) | |
| 29 | fvresi 7107 | . . . . . . . 8 ⊢ (𝑣 ∈ 𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣) | |
| 30 | 29 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) ∧ 𝑣 ∈ 𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣) |
| 31 | 23, 25, 26, 26, 27, 28, 30 | offval 7619 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑎 ∘f · ( I ↾ 𝑉)) = (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) |
| 32 | 31 | oveq2d 7362 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))) |
| 33 | 32 | eqeq2d 2742 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))))) |
| 34 | 33 | anbi2d 630 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ((𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
| 35 | 34 | rexbidva 3154 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
| 36 | 16, 21, 35 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 I cid 5510 ↾ cres 5618 “ cima 5619 Fn wfn 6476 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ↑m cmap 8750 finSupp cfsupp 9245 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 Σg cgsu 17344 LModclmod 20794 LSpanclspn 20905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19126 df-cntz 19230 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-nzr 20429 df-subrg 20486 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lmhm 20957 df-lbs 21010 df-sra 21108 df-rgmod 21109 df-dsmm 21670 df-frlm 21685 df-uvc 21721 |
| This theorem is referenced by: elrsp 33335 lbslsp 33340 lbsdiflsp0 33637 fedgmul 33642 fldextrspunlsplem 33684 fldextrspunlsp 33685 |
| Copyright terms: Public domain | W3C validator |