Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellspds Structured version   Visualization version   GIF version

Theorem ellspds 31543
Description: Variation on ellspd 20990. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
ellspds.n 𝑁 = (LSpan‘𝑀)
ellspds.v 𝐵 = (Base‘𝑀)
ellspds.k 𝐾 = (Base‘𝑆)
ellspds.s 𝑆 = (Scalar‘𝑀)
ellspds.z 0 = (0g𝑆)
ellspds.t · = ( ·𝑠𝑀)
ellspds.m (𝜑𝑀 ∈ LMod)
ellspds.1 (𝜑𝑉𝐵)
Assertion
Ref Expression
ellspds (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Distinct variable groups:   𝐵,𝑎   𝐾,𝑎,𝑣   𝑁,𝑎   𝑀,𝑎   𝑆,𝑎   𝑋,𝑎   𝑉,𝑎,𝑣   𝜑,𝑎,𝑣   0 ,𝑎   · ,𝑎,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑆(𝑣)   𝑀(𝑣)   𝑁(𝑣)   𝑋(𝑣)   0 (𝑣)

Proof of Theorem ellspds
StepHypRef Expression
1 ellspds.n . . 3 𝑁 = (LSpan‘𝑀)
2 ellspds.v . . 3 𝐵 = (Base‘𝑀)
3 ellspds.k . . 3 𝐾 = (Base‘𝑆)
4 ellspds.s . . 3 𝑆 = (Scalar‘𝑀)
5 ellspds.z . . 3 0 = (0g𝑆)
6 ellspds.t . . 3 · = ( ·𝑠𝑀)
7 f1oi 6749 . . . . 5 ( I ↾ 𝑉):𝑉1-1-onto𝑉
8 f1of 6712 . . . . 5 (( I ↾ 𝑉):𝑉1-1-onto𝑉 → ( I ↾ 𝑉):𝑉𝑉)
97, 8mp1i 13 . . . 4 (𝜑 → ( I ↾ 𝑉):𝑉𝑉)
10 ellspds.1 . . . 4 (𝜑𝑉𝐵)
119, 10fssd 6614 . . 3 (𝜑 → ( I ↾ 𝑉):𝑉𝐵)
12 ellspds.m . . 3 (𝜑𝑀 ∈ LMod)
132fvexi 6782 . . . . 5 𝐵 ∈ V
1413a1i 11 . . . 4 (𝜑𝐵 ∈ V)
1514, 10ssexd 5251 . . 3 (𝜑𝑉 ∈ V)
161, 2, 3, 4, 5, 6, 11, 12, 15ellspd 20990 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))))))
17 ssid 3947 . . . . 5 𝑉𝑉
18 resiima 5981 . . . . 5 (𝑉𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
1917, 18mp1i 13 . . . 4 (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
2019fveq2d 6772 . . 3 (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁𝑉))
2120eleq2d 2825 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁𝑉)))
22 elmapfn 8627 . . . . . . . 8 (𝑎 ∈ (𝐾m 𝑉) → 𝑎 Fn 𝑉)
2322adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑎 Fn 𝑉)
247, 8mp1i 13 . . . . . . . 8 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉):𝑉𝑉)
2524ffnd 6597 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉) Fn 𝑉)
2615adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑉 ∈ V)
27 inidm 4157 . . . . . . 7 (𝑉𝑉) = 𝑉
28 eqidd 2740 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (𝑎𝑣) = (𝑎𝑣))
29 fvresi 7039 . . . . . . . 8 (𝑣𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3029adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3123, 25, 26, 26, 27, 28, 30offval 7533 . . . . . 6 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑎f · ( I ↾ 𝑉)) = (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))
3231oveq2d 7284 . . . . 5 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))
3332eqeq2d 2750 . . . 4 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))))
3433anbi2d 628 . . 3 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ((𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3534rexbidva 3226 . 2 (𝜑 → (∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3616, 21, 353bitr3d 308 1 (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wrex 3066  Vcvv 3430  wss 3891   class class class wbr 5078  cmpt 5161   I cid 5487  cres 5590  cima 5591   Fn wfn 6425  wf 6426  1-1-ontowf1o 6429  cfv 6430  (class class class)co 7268  f cof 7522  m cmap 8589   finSupp cfsupp 9089  Basecbs 16893  Scalarcsca 16946   ·𝑠 cvsca 16947  0gc0g 17131   Σg cgsu 17132  LModclmod 20104  LSpanclspn 20214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-sup 9162  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-fzo 13365  df-seq 13703  df-hash 14026  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-hom 16967  df-cco 16968  df-0g 17133  df-gsum 17134  df-prds 17139  df-pws 17141  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-mhm 18411  df-submnd 18412  df-grp 18561  df-minusg 18562  df-sbg 18563  df-mulg 18682  df-subg 18733  df-ghm 18813  df-cntz 18904  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-subrg 20003  df-lmod 20106  df-lss 20175  df-lsp 20215  df-lmhm 20265  df-lbs 20318  df-sra 20415  df-rgmod 20416  df-nzr 20510  df-dsmm 20920  df-frlm 20935  df-uvc 20971
This theorem is referenced by:  elrsp  31548  lbslsp  31551  lbsdiflsp0  31686  fedgmul  31691
  Copyright terms: Public domain W3C validator