![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellspds | Structured version Visualization version GIF version |
Description: Variation on ellspd 21348. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
ellspds.n | β’ π = (LSpanβπ) |
ellspds.v | β’ π΅ = (Baseβπ) |
ellspds.k | β’ πΎ = (Baseβπ) |
ellspds.s | β’ π = (Scalarβπ) |
ellspds.z | β’ 0 = (0gβπ) |
ellspds.t | β’ Β· = ( Β·π βπ) |
ellspds.m | β’ (π β π β LMod) |
ellspds.1 | β’ (π β π β π΅) |
Ref | Expression |
---|---|
ellspds | β’ (π β (π β (πβπ) β βπ β (πΎ βm π)(π finSupp 0 β§ π = (π Ξ£g (π£ β π β¦ ((πβπ£) Β· π£)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspds.n | . . 3 β’ π = (LSpanβπ) | |
2 | ellspds.v | . . 3 β’ π΅ = (Baseβπ) | |
3 | ellspds.k | . . 3 β’ πΎ = (Baseβπ) | |
4 | ellspds.s | . . 3 β’ π = (Scalarβπ) | |
5 | ellspds.z | . . 3 β’ 0 = (0gβπ) | |
6 | ellspds.t | . . 3 β’ Β· = ( Β·π βπ) | |
7 | f1oi 6868 | . . . . 5 β’ ( I βΎ π):πβ1-1-ontoβπ | |
8 | f1of 6830 | . . . . 5 β’ (( I βΎ π):πβ1-1-ontoβπ β ( I βΎ π):πβΆπ) | |
9 | 7, 8 | mp1i 13 | . . . 4 β’ (π β ( I βΎ π):πβΆπ) |
10 | ellspds.1 | . . . 4 β’ (π β π β π΅) | |
11 | 9, 10 | fssd 6732 | . . 3 β’ (π β ( I βΎ π):πβΆπ΅) |
12 | ellspds.m | . . 3 β’ (π β π β LMod) | |
13 | 2 | fvexi 6902 | . . . . 5 β’ π΅ β V |
14 | 13 | a1i 11 | . . . 4 β’ (π β π΅ β V) |
15 | 14, 10 | ssexd 5323 | . . 3 β’ (π β π β V) |
16 | 1, 2, 3, 4, 5, 6, 11, 12, 15 | ellspd 21348 | . 2 β’ (π β (π β (πβ(( I βΎ π) β π)) β βπ β (πΎ βm π)(π finSupp 0 β§ π = (π Ξ£g (π βf Β· ( I βΎ π)))))) |
17 | ssid 4003 | . . . . 5 β’ π β π | |
18 | resiima 6072 | . . . . 5 β’ (π β π β (( I βΎ π) β π) = π) | |
19 | 17, 18 | mp1i 13 | . . . 4 β’ (π β (( I βΎ π) β π) = π) |
20 | 19 | fveq2d 6892 | . . 3 β’ (π β (πβ(( I βΎ π) β π)) = (πβπ)) |
21 | 20 | eleq2d 2819 | . 2 β’ (π β (π β (πβ(( I βΎ π) β π)) β π β (πβπ))) |
22 | elmapfn 8855 | . . . . . . . 8 β’ (π β (πΎ βm π) β π Fn π) | |
23 | 22 | adantl 482 | . . . . . . 7 β’ ((π β§ π β (πΎ βm π)) β π Fn π) |
24 | 7, 8 | mp1i 13 | . . . . . . . 8 β’ ((π β§ π β (πΎ βm π)) β ( I βΎ π):πβΆπ) |
25 | 24 | ffnd 6715 | . . . . . . 7 β’ ((π β§ π β (πΎ βm π)) β ( I βΎ π) Fn π) |
26 | 15 | adantr 481 | . . . . . . 7 β’ ((π β§ π β (πΎ βm π)) β π β V) |
27 | inidm 4217 | . . . . . . 7 β’ (π β© π) = π | |
28 | eqidd 2733 | . . . . . . 7 β’ (((π β§ π β (πΎ βm π)) β§ π£ β π) β (πβπ£) = (πβπ£)) | |
29 | fvresi 7167 | . . . . . . . 8 β’ (π£ β π β (( I βΎ π)βπ£) = π£) | |
30 | 29 | adantl 482 | . . . . . . 7 β’ (((π β§ π β (πΎ βm π)) β§ π£ β π) β (( I βΎ π)βπ£) = π£) |
31 | 23, 25, 26, 26, 27, 28, 30 | offval 7675 | . . . . . 6 β’ ((π β§ π β (πΎ βm π)) β (π βf Β· ( I βΎ π)) = (π£ β π β¦ ((πβπ£) Β· π£))) |
32 | 31 | oveq2d 7421 | . . . . 5 β’ ((π β§ π β (πΎ βm π)) β (π Ξ£g (π βf Β· ( I βΎ π))) = (π Ξ£g (π£ β π β¦ ((πβπ£) Β· π£)))) |
33 | 32 | eqeq2d 2743 | . . . 4 β’ ((π β§ π β (πΎ βm π)) β (π = (π Ξ£g (π βf Β· ( I βΎ π))) β π = (π Ξ£g (π£ β π β¦ ((πβπ£) Β· π£))))) |
34 | 33 | anbi2d 629 | . . 3 β’ ((π β§ π β (πΎ βm π)) β ((π finSupp 0 β§ π = (π Ξ£g (π βf Β· ( I βΎ π)))) β (π finSupp 0 β§ π = (π Ξ£g (π£ β π β¦ ((πβπ£) Β· π£)))))) |
35 | 34 | rexbidva 3176 | . 2 β’ (π β (βπ β (πΎ βm π)(π finSupp 0 β§ π = (π Ξ£g (π βf Β· ( I βΎ π)))) β βπ β (πΎ βm π)(π finSupp 0 β§ π = (π Ξ£g (π£ β π β¦ ((πβπ£) Β· π£)))))) |
36 | 16, 21, 35 | 3bitr3d 308 | 1 β’ (π β (π β (πβπ) β βπ β (πΎ βm π)(π finSupp 0 β§ π = (π Ξ£g (π£ β π β¦ ((πβπ£) Β· π£)))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 Vcvv 3474 β wss 3947 class class class wbr 5147 β¦ cmpt 5230 I cid 5572 βΎ cres 5677 β cima 5678 Fn wfn 6535 βΆwf 6536 β1-1-ontoβwf1o 6539 βcfv 6540 (class class class)co 7405 βf cof 7664 βm cmap 8816 finSupp cfsupp 9357 Basecbs 17140 Scalarcsca 17196 Β·π cvsca 17197 0gc0g 17381 Ξ£g cgsu 17382 LModclmod 20463 LSpanclspn 20574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-nzr 20284 df-subrg 20353 df-lmod 20465 df-lss 20535 df-lsp 20575 df-lmhm 20625 df-lbs 20678 df-sra 20777 df-rgmod 20778 df-dsmm 21278 df-frlm 21293 df-uvc 21329 |
This theorem is referenced by: elrsp 32474 lbslsp 32481 lbsdiflsp0 32699 fedgmul 32704 |
Copyright terms: Public domain | W3C validator |