Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellspds Structured version   Visualization version   GIF version

Theorem ellspds 33342
Description: Variation on ellspd 21743. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
ellspds.n 𝑁 = (LSpan‘𝑀)
ellspds.v 𝐵 = (Base‘𝑀)
ellspds.k 𝐾 = (Base‘𝑆)
ellspds.s 𝑆 = (Scalar‘𝑀)
ellspds.z 0 = (0g𝑆)
ellspds.t · = ( ·𝑠𝑀)
ellspds.m (𝜑𝑀 ∈ LMod)
ellspds.1 (𝜑𝑉𝐵)
Assertion
Ref Expression
ellspds (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Distinct variable groups:   𝐵,𝑎   𝐾,𝑎,𝑣   𝑁,𝑎   𝑀,𝑎   𝑆,𝑎   𝑋,𝑎   𝑉,𝑎,𝑣   𝜑,𝑎,𝑣   0 ,𝑎   · ,𝑎,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑆(𝑣)   𝑀(𝑣)   𝑁(𝑣)   𝑋(𝑣)   0 (𝑣)

Proof of Theorem ellspds
StepHypRef Expression
1 ellspds.n . . 3 𝑁 = (LSpan‘𝑀)
2 ellspds.v . . 3 𝐵 = (Base‘𝑀)
3 ellspds.k . . 3 𝐾 = (Base‘𝑆)
4 ellspds.s . . 3 𝑆 = (Scalar‘𝑀)
5 ellspds.z . . 3 0 = (0g𝑆)
6 ellspds.t . . 3 · = ( ·𝑠𝑀)
7 f1oi 6808 . . . . 5 ( I ↾ 𝑉):𝑉1-1-onto𝑉
8 f1of 6770 . . . . 5 (( I ↾ 𝑉):𝑉1-1-onto𝑉 → ( I ↾ 𝑉):𝑉𝑉)
97, 8mp1i 13 . . . 4 (𝜑 → ( I ↾ 𝑉):𝑉𝑉)
10 ellspds.1 . . . 4 (𝜑𝑉𝐵)
119, 10fssd 6675 . . 3 (𝜑 → ( I ↾ 𝑉):𝑉𝐵)
12 ellspds.m . . 3 (𝜑𝑀 ∈ LMod)
132fvexi 6844 . . . . 5 𝐵 ∈ V
1413a1i 11 . . . 4 (𝜑𝐵 ∈ V)
1514, 10ssexd 5266 . . 3 (𝜑𝑉 ∈ V)
161, 2, 3, 4, 5, 6, 11, 12, 15ellspd 21743 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))))))
17 ssid 3953 . . . . 5 𝑉𝑉
18 resiima 6031 . . . . 5 (𝑉𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
1917, 18mp1i 13 . . . 4 (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
2019fveq2d 6834 . . 3 (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁𝑉))
2120eleq2d 2819 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁𝑉)))
22 elmapfn 8797 . . . . . . . 8 (𝑎 ∈ (𝐾m 𝑉) → 𝑎 Fn 𝑉)
2322adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑎 Fn 𝑉)
247, 8mp1i 13 . . . . . . . 8 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉):𝑉𝑉)
2524ffnd 6659 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉) Fn 𝑉)
2615adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑉 ∈ V)
27 inidm 4176 . . . . . . 7 (𝑉𝑉) = 𝑉
28 eqidd 2734 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (𝑎𝑣) = (𝑎𝑣))
29 fvresi 7115 . . . . . . . 8 (𝑣𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3029adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3123, 25, 26, 26, 27, 28, 30offval 7627 . . . . . 6 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑎f · ( I ↾ 𝑉)) = (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))
3231oveq2d 7370 . . . . 5 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))
3332eqeq2d 2744 . . . 4 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))))
3433anbi2d 630 . . 3 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ((𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3534rexbidva 3155 . 2 (𝜑 → (∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3616, 21, 353bitr3d 309 1 (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176   I cid 5515  cres 5623  cima 5624   Fn wfn 6483  wf 6484  1-1-ontowf1o 6487  cfv 6488  (class class class)co 7354  f cof 7616  m cmap 8758   finSupp cfsupp 9254  Basecbs 17124  Scalarcsca 17168   ·𝑠 cvsca 17169  0gc0g 17347   Σg cgsu 17348  LModclmod 20797  LSpanclspn 20908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-0g 17349  df-gsum 17350  df-prds 17355  df-pws 17357  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-subg 19040  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-nzr 20432  df-subrg 20489  df-lmod 20799  df-lss 20869  df-lsp 20909  df-lmhm 20960  df-lbs 21013  df-sra 21111  df-rgmod 21112  df-dsmm 21673  df-frlm 21688  df-uvc 21724
This theorem is referenced by:  elrsp  33346  lbslsp  33351  lbsdiflsp0  33662  fedgmul  33667  fldextrspunlsplem  33709  fldextrspunlsp  33710
  Copyright terms: Public domain W3C validator