| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellspds | Structured version Visualization version GIF version | ||
| Description: Variation on ellspd 21822. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| ellspds.n | ⊢ 𝑁 = (LSpan‘𝑀) |
| ellspds.v | ⊢ 𝐵 = (Base‘𝑀) |
| ellspds.k | ⊢ 𝐾 = (Base‘𝑆) |
| ellspds.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| ellspds.z | ⊢ 0 = (0g‘𝑆) |
| ellspds.t | ⊢ · = ( ·𝑠 ‘𝑀) |
| ellspds.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| ellspds.1 | ⊢ (𝜑 → 𝑉 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ellspds | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspds.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑀) | |
| 2 | ellspds.v | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 3 | ellspds.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
| 4 | ellspds.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 5 | ellspds.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
| 6 | ellspds.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 7 | f1oi 6886 | . . . . 5 ⊢ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉 | |
| 8 | f1of 6848 | . . . . 5 ⊢ (( I ↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | |
| 9 | 7, 8 | mp1i 13 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝑉) |
| 10 | ellspds.1 | . . . 4 ⊢ (𝜑 → 𝑉 ⊆ 𝐵) | |
| 11 | 9, 10 | fssd 6753 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝐵) |
| 12 | ellspds.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 13 | 2 | fvexi 6920 | . . . . 5 ⊢ 𝐵 ∈ V |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 15 | 14, 10 | ssexd 5324 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 16 | 1, 2, 3, 4, 5, 6, 11, 12, 15 | ellspd 21822 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))))) |
| 17 | ssid 4006 | . . . . 5 ⊢ 𝑉 ⊆ 𝑉 | |
| 18 | resiima 6094 | . . . . 5 ⊢ (𝑉 ⊆ 𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) | |
| 19 | 17, 18 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) |
| 20 | 19 | fveq2d 6910 | . . 3 ⊢ (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁‘𝑉)) |
| 21 | 20 | eleq2d 2827 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁‘𝑉))) |
| 22 | elmapfn 8905 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝐾 ↑m 𝑉) → 𝑎 Fn 𝑉) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → 𝑎 Fn 𝑉) |
| 24 | 7, 8 | mp1i 13 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ( I ↾ 𝑉):𝑉⟶𝑉) |
| 25 | 24 | ffnd 6737 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ( I ↾ 𝑉) Fn 𝑉) |
| 26 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → 𝑉 ∈ V) |
| 27 | inidm 4227 | . . . . . . 7 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
| 28 | eqidd 2738 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑎‘𝑣) = (𝑎‘𝑣)) | |
| 29 | fvresi 7193 | . . . . . . . 8 ⊢ (𝑣 ∈ 𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣) | |
| 30 | 29 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) ∧ 𝑣 ∈ 𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣) |
| 31 | 23, 25, 26, 26, 27, 28, 30 | offval 7706 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑎 ∘f · ( I ↾ 𝑉)) = (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) |
| 32 | 31 | oveq2d 7447 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))) |
| 33 | 32 | eqeq2d 2748 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))))) |
| 34 | 33 | anbi2d 630 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ((𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
| 35 | 34 | rexbidva 3177 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
| 36 | 16, 21, 35 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 class class class wbr 5143 ↦ cmpt 5225 I cid 5577 ↾ cres 5687 “ cima 5688 Fn wfn 6556 ⟶wf 6557 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ∘f cof 7695 ↑m cmap 8866 finSupp cfsupp 9401 Basecbs 17247 Scalarcsca 17300 ·𝑠 cvsca 17301 0gc0g 17484 Σg cgsu 17485 LModclmod 20858 LSpanclspn 20969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-nzr 20513 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lbs 21074 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-uvc 21803 |
| This theorem is referenced by: elrsp 33400 lbslsp 33405 lbsdiflsp0 33677 fedgmul 33682 fldextrspunlsplem 33723 fldextrspunlsp 33724 |
| Copyright terms: Public domain | W3C validator |