![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellspds | Structured version Visualization version GIF version |
Description: Variation on ellspd 20651. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
ellspds.n | ⊢ 𝑁 = (LSpan‘𝑀) |
ellspds.v | ⊢ 𝐵 = (Base‘𝑀) |
ellspds.k | ⊢ 𝐾 = (Base‘𝑆) |
ellspds.s | ⊢ 𝑆 = (Scalar‘𝑀) |
ellspds.z | ⊢ 0 = (0g‘𝑆) |
ellspds.t | ⊢ · = ( ·𝑠 ‘𝑀) |
ellspds.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
ellspds.1 | ⊢ (𝜑 → 𝑉 ⊆ 𝐵) |
Ref | Expression |
---|---|
ellspds | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑𝑚 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspds.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑀) | |
2 | ellspds.v | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
3 | ellspds.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
4 | ellspds.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | ellspds.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
6 | ellspds.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑀) | |
7 | f1oi 6483 | . . . . 5 ⊢ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉 | |
8 | f1of 6446 | . . . . 5 ⊢ (( I ↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | |
9 | 7, 8 | mp1i 13 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝑉) |
10 | ellspds.1 | . . . 4 ⊢ (𝜑 → 𝑉 ⊆ 𝐵) | |
11 | 9, 10 | fssd 6360 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝐵) |
12 | ellspds.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
13 | 2 | fvexi 6515 | . . . . 5 ⊢ 𝐵 ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
15 | 14, 10 | ssexd 5085 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
16 | 1, 2, 3, 4, 5, 6, 11, 12, 15 | ellspd 20651 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾 ↑𝑚 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘𝑓 · ( I ↾ 𝑉)))))) |
17 | ssid 3881 | . . . . 5 ⊢ 𝑉 ⊆ 𝑉 | |
18 | resiima 5786 | . . . . 5 ⊢ (𝑉 ⊆ 𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) | |
19 | 17, 18 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) |
20 | 19 | fveq2d 6505 | . . 3 ⊢ (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁‘𝑉)) |
21 | 20 | eleq2d 2851 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁‘𝑉))) |
22 | elmapfn 8231 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝐾 ↑𝑚 𝑉) → 𝑎 Fn 𝑉) | |
23 | 22 | adantl 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) → 𝑎 Fn 𝑉) |
24 | 7, 8 | mp1i 13 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) → ( I ↾ 𝑉):𝑉⟶𝑉) |
25 | 24 | ffnd 6347 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) → ( I ↾ 𝑉) Fn 𝑉) |
26 | 15 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) → 𝑉 ∈ V) |
27 | inidm 4084 | . . . . . . 7 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
28 | eqidd 2779 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑎‘𝑣) = (𝑎‘𝑣)) | |
29 | fvresi 6760 | . . . . . . . 8 ⊢ (𝑣 ∈ 𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣) | |
30 | 29 | adantl 474 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) ∧ 𝑣 ∈ 𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣) |
31 | 23, 25, 26, 26, 27, 28, 30 | offval 7236 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) → (𝑎 ∘𝑓 · ( I ↾ 𝑉)) = (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) |
32 | 31 | oveq2d 6994 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) → (𝑀 Σg (𝑎 ∘𝑓 · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))) |
33 | 32 | eqeq2d 2788 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) → (𝑋 = (𝑀 Σg (𝑎 ∘𝑓 · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))))) |
34 | 33 | anbi2d 619 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑𝑚 𝑉)) → ((𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘𝑓 · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
35 | 34 | rexbidva 3241 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ (𝐾 ↑𝑚 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘𝑓 · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾 ↑𝑚 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
36 | 16, 21, 35 | 3bitr3d 301 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑𝑚 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∃wrex 3089 Vcvv 3415 ⊆ wss 3831 class class class wbr 4930 ↦ cmpt 5009 I cid 5312 ↾ cres 5410 “ cima 5411 Fn wfn 6185 ⟶wf 6186 –1-1-onto→wf1o 6189 ‘cfv 6190 (class class class)co 6978 ∘𝑓 cof 7227 ↑𝑚 cmap 8208 finSupp cfsupp 8630 Basecbs 16342 Scalarcsca 16427 ·𝑠 cvsca 16428 0gc0g 16572 Σg cgsu 16573 LModclmod 19359 LSpanclspn 19468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-iin 4796 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-se 5368 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-isom 6199 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-of 7229 df-om 7399 df-1st 7503 df-2nd 7504 df-supp 7636 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-1o 7907 df-oadd 7911 df-er 8091 df-map 8210 df-ixp 8262 df-en 8309 df-dom 8310 df-sdom 8311 df-fin 8312 df-fsupp 8631 df-sup 8703 df-oi 8771 df-card 9164 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-nn 11442 df-2 11506 df-3 11507 df-4 11508 df-5 11509 df-6 11510 df-7 11511 df-8 11512 df-9 11513 df-n0 11711 df-z 11797 df-dec 11915 df-uz 12062 df-fz 12712 df-fzo 12853 df-seq 13188 df-hash 13509 df-struct 16344 df-ndx 16345 df-slot 16346 df-base 16348 df-sets 16349 df-ress 16350 df-plusg 16437 df-mulr 16438 df-sca 16440 df-vsca 16441 df-ip 16442 df-tset 16443 df-ple 16444 df-ds 16446 df-hom 16448 df-cco 16449 df-0g 16574 df-gsum 16575 df-prds 16580 df-pws 16582 df-mre 16718 df-mrc 16719 df-acs 16721 df-mgm 17713 df-sgrp 17755 df-mnd 17766 df-mhm 17806 df-submnd 17807 df-grp 17897 df-minusg 17898 df-sbg 17899 df-mulg 18015 df-subg 18063 df-ghm 18130 df-cntz 18221 df-cmn 18671 df-abl 18672 df-mgp 18966 df-ur 18978 df-ring 19025 df-subrg 19259 df-lmod 19361 df-lss 19429 df-lsp 19469 df-lmhm 19519 df-lbs 19572 df-sra 19669 df-rgmod 19670 df-nzr 19755 df-dsmm 20581 df-frlm 20596 df-uvc 20632 |
This theorem is referenced by: lbslsp 30609 lbsdiflsp0 30651 fedgmul 30656 |
Copyright terms: Public domain | W3C validator |