Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellspds | Structured version Visualization version GIF version |
Description: Variation on ellspd 21054. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
ellspds.n | ⊢ 𝑁 = (LSpan‘𝑀) |
ellspds.v | ⊢ 𝐵 = (Base‘𝑀) |
ellspds.k | ⊢ 𝐾 = (Base‘𝑆) |
ellspds.s | ⊢ 𝑆 = (Scalar‘𝑀) |
ellspds.z | ⊢ 0 = (0g‘𝑆) |
ellspds.t | ⊢ · = ( ·𝑠 ‘𝑀) |
ellspds.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
ellspds.1 | ⊢ (𝜑 → 𝑉 ⊆ 𝐵) |
Ref | Expression |
---|---|
ellspds | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspds.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑀) | |
2 | ellspds.v | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
3 | ellspds.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
4 | ellspds.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | ellspds.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
6 | ellspds.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑀) | |
7 | f1oi 6784 | . . . . 5 ⊢ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉 | |
8 | f1of 6746 | . . . . 5 ⊢ (( I ↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | |
9 | 7, 8 | mp1i 13 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝑉) |
10 | ellspds.1 | . . . 4 ⊢ (𝜑 → 𝑉 ⊆ 𝐵) | |
11 | 9, 10 | fssd 6648 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑉):𝑉⟶𝐵) |
12 | ellspds.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
13 | 2 | fvexi 6818 | . . . . 5 ⊢ 𝐵 ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
15 | 14, 10 | ssexd 5257 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
16 | 1, 2, 3, 4, 5, 6, 11, 12, 15 | ellspd 21054 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))))) |
17 | ssid 3948 | . . . . 5 ⊢ 𝑉 ⊆ 𝑉 | |
18 | resiima 5994 | . . . . 5 ⊢ (𝑉 ⊆ 𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) | |
19 | 17, 18 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉) |
20 | 19 | fveq2d 6808 | . . 3 ⊢ (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁‘𝑉)) |
21 | 20 | eleq2d 2822 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁‘𝑉))) |
22 | elmapfn 8684 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝐾 ↑m 𝑉) → 𝑎 Fn 𝑉) | |
23 | 22 | adantl 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → 𝑎 Fn 𝑉) |
24 | 7, 8 | mp1i 13 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ( I ↾ 𝑉):𝑉⟶𝑉) |
25 | 24 | ffnd 6631 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ( I ↾ 𝑉) Fn 𝑉) |
26 | 15 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → 𝑉 ∈ V) |
27 | inidm 4158 | . . . . . . 7 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
28 | eqidd 2737 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑎‘𝑣) = (𝑎‘𝑣)) | |
29 | fvresi 7077 | . . . . . . . 8 ⊢ (𝑣 ∈ 𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣) | |
30 | 29 | adantl 483 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) ∧ 𝑣 ∈ 𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣) |
31 | 23, 25, 26, 26, 27, 28, 30 | offval 7574 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑎 ∘f · ( I ↾ 𝑉)) = (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) |
32 | 31 | oveq2d 7323 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))) |
33 | 32 | eqeq2d 2747 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → (𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))))) |
34 | 33 | anbi2d 630 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝑉)) → ((𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
35 | 34 | rexbidva 3170 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑎 ∘f · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
36 | 16, 21, 35 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∃wrex 3071 Vcvv 3437 ⊆ wss 3892 class class class wbr 5081 ↦ cmpt 5164 I cid 5499 ↾ cres 5602 “ cima 5603 Fn wfn 6453 ⟶wf 6454 –1-1-onto→wf1o 6457 ‘cfv 6458 (class class class)co 7307 ∘f cof 7563 ↑m cmap 8646 finSupp cfsupp 9172 Basecbs 16957 Scalarcsca 17010 ·𝑠 cvsca 17011 0gc0g 17195 Σg cgsu 17196 LModclmod 20168 LSpanclspn 20278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-sup 9245 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-fzo 13429 df-seq 13768 df-hash 14091 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-hom 17031 df-cco 17032 df-0g 17197 df-gsum 17198 df-prds 17203 df-pws 17205 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-submnd 18476 df-grp 18625 df-minusg 18626 df-sbg 18627 df-mulg 18746 df-subg 18797 df-ghm 18877 df-cntz 18968 df-cmn 19433 df-abl 19434 df-mgp 19766 df-ur 19783 df-ring 19830 df-subrg 20067 df-lmod 20170 df-lss 20239 df-lsp 20279 df-lmhm 20329 df-lbs 20382 df-sra 20479 df-rgmod 20480 df-nzr 20574 df-dsmm 20984 df-frlm 20999 df-uvc 21035 |
This theorem is referenced by: elrsp 31614 lbslsp 31617 lbsdiflsp0 31752 fedgmul 31757 |
Copyright terms: Public domain | W3C validator |