Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmid | Structured version Visualization version GIF version |
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
fmid | ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 22999 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | f1oi 6754 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1ofo 6723 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋–onto→𝑋 |
5 | eqid 2738 | . . . . 5 ⊢ (𝑋filGen𝐹) = (𝑋filGen𝐹) | |
6 | 5 | elfm3 23101 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
7 | 1, 4, 6 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
8 | fgfil 23026 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) | |
9 | 8 | rexeqdv 3349 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
10 | filelss 23003 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → 𝑠 ⊆ 𝑋) | |
11 | resiima 5984 | . . . . . . . 8 ⊢ (𝑠 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑠) = 𝑠) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (( I ↾ 𝑋) “ 𝑠) = 𝑠) |
13 | 12 | eqeq2d 2749 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 = 𝑠)) |
14 | equcom 2021 | . . . . . 6 ⊢ (𝑠 = 𝑡 ↔ 𝑡 = 𝑠) | |
15 | 13, 14 | bitr4di 289 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑠 = 𝑡)) |
16 | 15 | rexbidva 3225 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡)) |
17 | risset 3194 | . . . 4 ⊢ (𝑡 ∈ 𝐹 ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡) | |
18 | 16, 17 | bitr4di 289 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 ∈ 𝐹)) |
19 | 7, 9, 18 | 3bitrd 305 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ 𝑡 ∈ 𝐹)) |
20 | 19 | eqrdv 2736 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 I cid 5488 ↾ cres 5591 “ cima 5592 –onto→wfo 6431 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 fBascfbas 20585 filGencfg 20586 Filcfil 22996 FilMap cfm 23084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-fbas 20594 df-fg 20595 df-fil 22997 df-fm 23089 |
This theorem is referenced by: ufldom 23113 |
Copyright terms: Public domain | W3C validator |