MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmid Structured version   Visualization version   GIF version

Theorem fmid 22570
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmid (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹)

Proof of Theorem fmid
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 22458 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 f1oi 6654 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1ofo 6624 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
42, 3ax-mp 5 . . . 4 ( I ↾ 𝑋):𝑋onto𝑋
5 eqid 2823 . . . . 5 (𝑋filGen𝐹) = (𝑋filGen𝐹)
65elfm3 22560 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ ( I ↾ 𝑋):𝑋onto𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠)))
71, 4, 6sylancl 588 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠)))
8 fgfil 22485 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
98rexeqdv 3418 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠)))
10 filelss 22462 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
11 resiima 5946 . . . . . . . 8 (𝑠𝑋 → (( I ↾ 𝑋) “ 𝑠) = 𝑠)
1210, 11syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → (( I ↾ 𝑋) “ 𝑠) = 𝑠)
1312eqeq2d 2834 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 = 𝑠))
14 equcom 2025 . . . . . 6 (𝑠 = 𝑡𝑡 = 𝑠)
1513, 14syl6bbr 291 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑠 = 𝑡))
1615rexbidva 3298 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (∃𝑠𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠𝐹 𝑠 = 𝑡))
17 risset 3269 . . . 4 (𝑡𝐹 ↔ ∃𝑠𝐹 𝑠 = 𝑡)
1816, 17syl6bbr 291 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑠𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡𝐹))
197, 9, 183bitrd 307 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ 𝑡𝐹))
2019eqrdv 2821 1 (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  wss 3938   I cid 5461  cres 5559  cima 5560  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  fBascfbas 20535  filGencfg 20536  Filcfil 22455   FilMap cfm 22543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-fbas 20544  df-fg 20545  df-fil 22456  df-fm 22548
This theorem is referenced by:  ufldom  22572
  Copyright terms: Public domain W3C validator