MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmid Structured version   Visualization version   GIF version

Theorem fmid 23989
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmid (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹)

Proof of Theorem fmid
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 23877 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 f1oi 6900 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1ofo 6869 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
42, 3ax-mp 5 . . . 4 ( I ↾ 𝑋):𝑋onto𝑋
5 eqid 2740 . . . . 5 (𝑋filGen𝐹) = (𝑋filGen𝐹)
65elfm3 23979 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ ( I ↾ 𝑋):𝑋onto𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠)))
71, 4, 6sylancl 585 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠)))
8 fgfil 23904 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
98rexeqdv 3335 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠)))
10 filelss 23881 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
11 resiima 6105 . . . . . . . 8 (𝑠𝑋 → (( I ↾ 𝑋) “ 𝑠) = 𝑠)
1210, 11syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → (( I ↾ 𝑋) “ 𝑠) = 𝑠)
1312eqeq2d 2751 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 = 𝑠))
14 equcom 2017 . . . . . 6 (𝑠 = 𝑡𝑡 = 𝑠)
1513, 14bitr4di 289 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑠 = 𝑡))
1615rexbidva 3183 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (∃𝑠𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠𝐹 𝑠 = 𝑡))
17 risset 3239 . . . 4 (𝑡𝐹 ↔ ∃𝑠𝐹 𝑠 = 𝑡)
1816, 17bitr4di 289 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑠𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡𝐹))
197, 9, 183bitrd 305 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ 𝑡𝐹))
2019eqrdv 2738 1 (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976   I cid 5592  cres 5702  cima 5703  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  fBascfbas 21375  filGencfg 21376  Filcfil 23874   FilMap cfm 23962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-fg 21385  df-fil 23875  df-fm 23967
This theorem is referenced by:  ufldom  23991
  Copyright terms: Public domain W3C validator