![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmid | Structured version Visualization version GIF version |
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
fmid | ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 23574 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | f1oi 6872 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1ofo 6841 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋–onto→𝑋 |
5 | eqid 2730 | . . . . 5 ⊢ (𝑋filGen𝐹) = (𝑋filGen𝐹) | |
6 | 5 | elfm3 23676 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
7 | 1, 4, 6 | sylancl 584 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
8 | fgfil 23601 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) | |
9 | 8 | rexeqdv 3324 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
10 | filelss 23578 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → 𝑠 ⊆ 𝑋) | |
11 | resiima 6076 | . . . . . . . 8 ⊢ (𝑠 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑠) = 𝑠) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (( I ↾ 𝑋) “ 𝑠) = 𝑠) |
13 | 12 | eqeq2d 2741 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 = 𝑠)) |
14 | equcom 2019 | . . . . . 6 ⊢ (𝑠 = 𝑡 ↔ 𝑡 = 𝑠) | |
15 | 13, 14 | bitr4di 288 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑠 = 𝑡)) |
16 | 15 | rexbidva 3174 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡)) |
17 | risset 3228 | . . . 4 ⊢ (𝑡 ∈ 𝐹 ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡) | |
18 | 16, 17 | bitr4di 288 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 ∈ 𝐹)) |
19 | 7, 9, 18 | 3bitrd 304 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ 𝑡 ∈ 𝐹)) |
20 | 19 | eqrdv 2728 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 ⊆ wss 3949 I cid 5574 ↾ cres 5679 “ cima 5680 –onto→wfo 6542 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7413 fBascfbas 21134 filGencfg 21135 Filcfil 23571 FilMap cfm 23659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-fbas 21143 df-fg 21144 df-fil 23572 df-fm 23664 |
This theorem is referenced by: ufldom 23688 |
Copyright terms: Public domain | W3C validator |