Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmid | Structured version Visualization version GIF version |
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
fmid | ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 22745 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | f1oi 6698 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1ofo 6668 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋–onto→𝑋 |
5 | eqid 2737 | . . . . 5 ⊢ (𝑋filGen𝐹) = (𝑋filGen𝐹) | |
6 | 5 | elfm3 22847 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
7 | 1, 4, 6 | sylancl 589 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
8 | fgfil 22772 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) | |
9 | 8 | rexeqdv 3326 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
10 | filelss 22749 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → 𝑠 ⊆ 𝑋) | |
11 | resiima 5944 | . . . . . . . 8 ⊢ (𝑠 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑠) = 𝑠) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (( I ↾ 𝑋) “ 𝑠) = 𝑠) |
13 | 12 | eqeq2d 2748 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 = 𝑠)) |
14 | equcom 2026 | . . . . . 6 ⊢ (𝑠 = 𝑡 ↔ 𝑡 = 𝑠) | |
15 | 13, 14 | bitr4di 292 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑠 = 𝑡)) |
16 | 15 | rexbidva 3215 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡)) |
17 | risset 3186 | . . . 4 ⊢ (𝑡 ∈ 𝐹 ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡) | |
18 | 16, 17 | bitr4di 292 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 ∈ 𝐹)) |
19 | 7, 9, 18 | 3bitrd 308 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ 𝑡 ∈ 𝐹)) |
20 | 19 | eqrdv 2735 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ⊆ wss 3866 I cid 5454 ↾ cres 5553 “ cima 5554 –onto→wfo 6378 –1-1-onto→wf1o 6379 ‘cfv 6380 (class class class)co 7213 fBascfbas 20351 filGencfg 20352 Filcfil 22742 FilMap cfm 22830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-fbas 20360 df-fg 20361 df-fil 22743 df-fm 22835 |
This theorem is referenced by: ufldom 22859 |
Copyright terms: Public domain | W3C validator |