| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmid | Structured version Visualization version GIF version | ||
| Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmid | ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23764 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | f1oi 6806 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 3 | f1ofo 6775 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋–onto→𝑋 |
| 5 | eqid 2733 | . . . . 5 ⊢ (𝑋filGen𝐹) = (𝑋filGen𝐹) | |
| 6 | 5 | elfm3 23866 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
| 7 | 1, 4, 6 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
| 8 | fgfil 23791 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) | |
| 9 | 8 | rexeqdv 3294 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
| 10 | filelss 23768 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → 𝑠 ⊆ 𝑋) | |
| 11 | resiima 6029 | . . . . . . . 8 ⊢ (𝑠 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑠) = 𝑠) | |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (( I ↾ 𝑋) “ 𝑠) = 𝑠) |
| 13 | 12 | eqeq2d 2744 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 = 𝑠)) |
| 14 | equcom 2019 | . . . . . 6 ⊢ (𝑠 = 𝑡 ↔ 𝑡 = 𝑠) | |
| 15 | 13, 14 | bitr4di 289 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑠 = 𝑡)) |
| 16 | 15 | rexbidva 3155 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡)) |
| 17 | risset 3208 | . . . 4 ⊢ (𝑡 ∈ 𝐹 ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡) | |
| 18 | 16, 17 | bitr4di 289 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 ∈ 𝐹)) |
| 19 | 7, 9, 18 | 3bitrd 305 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ 𝑡 ∈ 𝐹)) |
| 20 | 19 | eqrdv 2731 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 I cid 5513 ↾ cres 5621 “ cima 5622 –onto→wfo 6484 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 fBascfbas 21281 filGencfg 21282 Filcfil 23761 FilMap cfm 23849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-fbas 21290 df-fg 21291 df-fil 23762 df-fm 23854 |
| This theorem is referenced by: ufldom 23878 |
| Copyright terms: Public domain | W3C validator |