MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmid Structured version   Visualization version   GIF version

Theorem fmid 23898
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmid (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹)

Proof of Theorem fmid
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 23786 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 f1oi 6856 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1ofo 6825 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
42, 3ax-mp 5 . . . 4 ( I ↾ 𝑋):𝑋onto𝑋
5 eqid 2735 . . . . 5 (𝑋filGen𝐹) = (𝑋filGen𝐹)
65elfm3 23888 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ ( I ↾ 𝑋):𝑋onto𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠)))
71, 4, 6sylancl 586 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠)))
8 fgfil 23813 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
98rexeqdv 3306 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠)))
10 filelss 23790 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
11 resiima 6063 . . . . . . . 8 (𝑠𝑋 → (( I ↾ 𝑋) “ 𝑠) = 𝑠)
1210, 11syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → (( I ↾ 𝑋) “ 𝑠) = 𝑠)
1312eqeq2d 2746 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 = 𝑠))
14 equcom 2017 . . . . . 6 (𝑠 = 𝑡𝑡 = 𝑠)
1513, 14bitr4di 289 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑠 = 𝑡))
1615rexbidva 3162 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (∃𝑠𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠𝐹 𝑠 = 𝑡))
17 risset 3217 . . . 4 (𝑡𝐹 ↔ ∃𝑠𝐹 𝑠 = 𝑡)
1816, 17bitr4di 289 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑠𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡𝐹))
197, 9, 183bitrd 305 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ 𝑡𝐹))
2019eqrdv 2733 1 (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  wss 3926   I cid 5547  cres 5656  cima 5657  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  fBascfbas 21303  filGencfg 21304  Filcfil 23783   FilMap cfm 23871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-fbas 21312  df-fg 21313  df-fil 23784  df-fm 23876
This theorem is referenced by:  ufldom  23900
  Copyright terms: Public domain W3C validator