Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds2 Structured version   Visualization version   GIF version

Theorem islinds2 20506
 Description: Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islinds2 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   𝑌(𝑥,𝑘)   0 (𝑥)

Proof of Theorem islinds2
StepHypRef Expression
1 islindf.b . . 3 𝐵 = (Base‘𝑊)
21islinds 20502 . 2 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑊)))
31fvexi 6663 . . . . . . 7 𝐵 ∈ V
43ssex 5192 . . . . . 6 (𝐹𝐵𝐹 ∈ V)
54adantl 485 . . . . 5 ((𝑊𝑌𝐹𝐵) → 𝐹 ∈ V)
6 resiexg 7605 . . . . 5 (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V)
75, 6syl 17 . . . 4 ((𝑊𝑌𝐹𝐵) → ( I ↾ 𝐹) ∈ V)
8 islindf.v . . . . 5 · = ( ·𝑠𝑊)
9 islindf.k . . . . 5 𝐾 = (LSpan‘𝑊)
10 islindf.s . . . . 5 𝑆 = (Scalar‘𝑊)
11 islindf.n . . . . 5 𝑁 = (Base‘𝑆)
12 islindf.z . . . . 5 0 = (0g𝑆)
131, 8, 9, 10, 11, 12islindf 20505 . . . 4 ((𝑊𝑌 ∧ ( I ↾ 𝐹) ∈ V) → (( I ↾ 𝐹) LIndF 𝑊 ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))))
147, 13syldan 594 . . 3 ((𝑊𝑌𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑊 ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))))
1514pm5.32da 582 . 2 (𝑊𝑌 → ((𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑊) ↔ (𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))))))
16 f1oi 6631 . . . . . . . . 9 ( I ↾ 𝐹):𝐹1-1-onto𝐹
17 f1of 6594 . . . . . . . . 9 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
1816, 17ax-mp 5 . . . . . . . 8 ( I ↾ 𝐹):𝐹𝐹
19 dmresi 5892 . . . . . . . . 9 dom ( I ↾ 𝐹) = 𝐹
2019feq2i 6483 . . . . . . . 8 (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹 ↔ ( I ↾ 𝐹):𝐹𝐹)
2118, 20mpbir 234 . . . . . . 7 ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹
22 fss 6505 . . . . . . 7 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹𝐹𝐵) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵)
2321, 22mpan 689 . . . . . 6 (𝐹𝐵 → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵)
2423biantrurd 536 . . . . 5 (𝐹𝐵 → (∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})) ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
2519raleqi 3365 . . . . . . 7 (∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))
26 fvresi 6916 . . . . . . . . . . . 12 (𝑥𝐹 → (( I ↾ 𝐹)‘𝑥) = 𝑥)
2726oveq2d 7155 . . . . . . . . . . 11 (𝑥𝐹 → (𝑘 · (( I ↾ 𝐹)‘𝑥)) = (𝑘 · 𝑥))
2819difeq1i 4049 . . . . . . . . . . . . . . 15 (dom ( I ↾ 𝐹) ∖ {𝑥}) = (𝐹 ∖ {𝑥})
2928imaeq2i 5898 . . . . . . . . . . . . . 14 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥}))
30 difss 4062 . . . . . . . . . . . . . . 15 (𝐹 ∖ {𝑥}) ⊆ 𝐹
31 resiima 5915 . . . . . . . . . . . . . . 15 ((𝐹 ∖ {𝑥}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥})) = (𝐹 ∖ {𝑥}))
3230, 31ax-mp 5 . . . . . . . . . . . . . 14 (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥})) = (𝐹 ∖ {𝑥})
3329, 32eqtri 2824 . . . . . . . . . . . . 13 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})) = (𝐹 ∖ {𝑥})
3433fveq2i 6652 . . . . . . . . . . . 12 (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) = (𝐾‘(𝐹 ∖ {𝑥}))
3534a1i 11 . . . . . . . . . . 11 (𝑥𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) = (𝐾‘(𝐹 ∖ {𝑥})))
3627, 35eleq12d 2887 . . . . . . . . . 10 (𝑥𝐹 → ((𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3736notbid 321 . . . . . . . . 9 (𝑥𝐹 → (¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3837ralbidv 3165 . . . . . . . 8 (𝑥𝐹 → (∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3938ralbiia 3135 . . . . . . 7 (∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))
4025, 39bitri 278 . . . . . 6 (∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))
4140anbi2i 625 . . . . 5 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))) ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4224, 41syl6rbbr 293 . . . 4 (𝐹𝐵 → ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4342pm5.32i 578 . . 3 ((𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4443a1i 11 . 2 (𝑊𝑌 → ((𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
452, 15, 443bitrd 308 1 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  Vcvv 3444   ∖ cdif 3881   ⊆ wss 3884  {csn 4528   class class class wbr 5033   I cid 5427  dom cdm 5523   ↾ cres 5525   “ cima 5526  ⟶wf 6324  –1-1-onto→wf1o 6327  ‘cfv 6328  (class class class)co 7139  Basecbs 16479  Scalarcsca 16564   ·𝑠 cvsca 16565  0gc0g 16709  LSpanclspn 19740   LIndF clindf 20497  LIndSclinds 20498 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-lindf 20499  df-linds 20500 This theorem is referenced by:  lindsind  20510  lindfrn  20514  islbs4  20525  0nellinds  30990  lindssn  30997  lindsunlem  31112  lindsun  31113  lindsadd  35049  lindsenlbs  35051  lindslininds  44870
 Copyright terms: Public domain W3C validator