MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds2 Structured version   Visualization version   GIF version

Theorem islinds2 20362
Description: Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islinds2 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   𝑌(𝑥,𝑘)   0 (𝑥)

Proof of Theorem islinds2
StepHypRef Expression
1 islindf.b . . 3 𝐵 = (Base‘𝑊)
21islinds 20358 . 2 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑊)))
31fvexi 6422 . . . . . . 7 𝐵 ∈ V
43ssex 4997 . . . . . 6 (𝐹𝐵𝐹 ∈ V)
54adantl 469 . . . . 5 ((𝑊𝑌𝐹𝐵) → 𝐹 ∈ V)
6 resiexg 7332 . . . . 5 (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V)
75, 6syl 17 . . . 4 ((𝑊𝑌𝐹𝐵) → ( I ↾ 𝐹) ∈ V)
8 islindf.v . . . . 5 · = ( ·𝑠𝑊)
9 islindf.k . . . . 5 𝐾 = (LSpan‘𝑊)
10 islindf.s . . . . 5 𝑆 = (Scalar‘𝑊)
11 islindf.n . . . . 5 𝑁 = (Base‘𝑆)
12 islindf.z . . . . 5 0 = (0g𝑆)
131, 8, 9, 10, 11, 12islindf 20361 . . . 4 ((𝑊𝑌 ∧ ( I ↾ 𝐹) ∈ V) → (( I ↾ 𝐹) LIndF 𝑊 ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))))
147, 13syldan 581 . . 3 ((𝑊𝑌𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑊 ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))))
1514pm5.32da 570 . 2 (𝑊𝑌 → ((𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑊) ↔ (𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))))))
16 f1oi 6390 . . . . . . . . 9 ( I ↾ 𝐹):𝐹1-1-onto𝐹
17 f1of 6353 . . . . . . . . 9 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
1816, 17ax-mp 5 . . . . . . . 8 ( I ↾ 𝐹):𝐹𝐹
19 dmresi 5669 . . . . . . . . 9 dom ( I ↾ 𝐹) = 𝐹
2019feq2i 6248 . . . . . . . 8 (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹 ↔ ( I ↾ 𝐹):𝐹𝐹)
2118, 20mpbir 222 . . . . . . 7 ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹
22 fss 6269 . . . . . . 7 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹𝐹𝐵) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵)
2321, 22mpan 673 . . . . . 6 (𝐹𝐵 → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵)
2423biantrurd 524 . . . . 5 (𝐹𝐵 → (∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})) ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
2519raleqi 3331 . . . . . . 7 (∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))
26 fvresi 6664 . . . . . . . . . . . 12 (𝑥𝐹 → (( I ↾ 𝐹)‘𝑥) = 𝑥)
2726oveq2d 6890 . . . . . . . . . . 11 (𝑥𝐹 → (𝑘 · (( I ↾ 𝐹)‘𝑥)) = (𝑘 · 𝑥))
2819difeq1i 3923 . . . . . . . . . . . . . . 15 (dom ( I ↾ 𝐹) ∖ {𝑥}) = (𝐹 ∖ {𝑥})
2928imaeq2i 5674 . . . . . . . . . . . . . 14 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥}))
30 difss 3936 . . . . . . . . . . . . . . 15 (𝐹 ∖ {𝑥}) ⊆ 𝐹
31 resiima 5690 . . . . . . . . . . . . . . 15 ((𝐹 ∖ {𝑥}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥})) = (𝐹 ∖ {𝑥}))
3230, 31ax-mp 5 . . . . . . . . . . . . . 14 (( I ↾ 𝐹) “ (𝐹 ∖ {𝑥})) = (𝐹 ∖ {𝑥})
3329, 32eqtri 2828 . . . . . . . . . . . . 13 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})) = (𝐹 ∖ {𝑥})
3433fveq2i 6411 . . . . . . . . . . . 12 (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) = (𝐾‘(𝐹 ∖ {𝑥}))
3534a1i 11 . . . . . . . . . . 11 (𝑥𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) = (𝐾‘(𝐹 ∖ {𝑥})))
3627, 35eleq12d 2879 . . . . . . . . . 10 (𝑥𝐹 → ((𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3736notbid 309 . . . . . . . . 9 (𝑥𝐹 → (¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3837ralbidv 3174 . . . . . . . 8 (𝑥𝐹 → (∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
3938ralbiia 3167 . . . . . . 7 (∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))
4025, 39bitri 266 . . . . . 6 (∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))
4140anbi2i 611 . . . . 5 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))) ↔ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4224, 41syl6rbbr 281 . . . 4 (𝐹𝐵 → ((( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥})))) ↔ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4342pm5.32i 566 . . 3 ((𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))
4443a1i 11 . 2 (𝑊𝑌 → ((𝐹𝐵 ∧ (( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐵 ∧ ∀𝑥 ∈ dom ( I ↾ 𝐹)∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (( I ↾ 𝐹)‘𝑥)) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝑥}))))) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
452, 15, 443bitrd 296 1 (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wral 3096  Vcvv 3391  cdif 3766  wss 3769  {csn 4370   class class class wbr 4844   I cid 5218  dom cdm 5311  cres 5313  cima 5314  wf 6097  1-1-ontowf1o 6100  cfv 6101  (class class class)co 6874  Basecbs 16068  Scalarcsca 16156   ·𝑠 cvsca 16157  0gc0g 16305  LSpanclspn 19178   LIndF clindf 20353  LIndSclinds 20354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6877  df-lindf 20355  df-linds 20356
This theorem is referenced by:  lindsind  20366  lindfrn  20370  islbs4  20381  lindsenlbs  33717  lindslininds  42821
  Copyright terms: Public domain W3C validator