MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssidcn Structured version   Visualization version   GIF version

Theorem ssidcn 23190
Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
ssidcn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾𝐽))

Proof of Theorem ssidcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscn 23170 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
2 f1oi 6809 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1of 6771 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
42, 3ax-mp 5 . . . 4 ( I ↾ 𝑋):𝑋𝑋
54biantrur 530 . . 3 (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))
61, 5bitr4di 289 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))
7 cnvresid 6568 . . . . . . 7 ( I ↾ 𝑋) = ( I ↾ 𝑋)
87imaeq1i 6013 . . . . . 6 (( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥)
9 elssuni 4891 . . . . . . . . 9 (𝑥𝐾𝑥 𝐾)
109adantl 481 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑥 𝐾)
11 toponuni 22849 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = 𝐾)
1211ad2antlr 727 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑋 = 𝐾)
1310, 12sseqtrrd 3968 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑥𝑋)
14 resiima 6032 . . . . . . 7 (𝑥𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
1513, 14syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
168, 15eqtrid 2780 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
1716eleq1d 2818 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → ((( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝑥𝐽))
1817ralbidva 3154 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ ∀𝑥𝐾 𝑥𝐽))
19 dfss3 3919 . . 3 (𝐾𝐽 ↔ ∀𝑥𝐾 𝑥𝐽)
2018, 19bitr4di 289 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝐾𝐽))
216, 20bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wss 3898   cuni 4860   I cid 5515  ccnv 5620  cres 5623  cima 5624  wf 6485  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  TopOnctopon 22845   Cn ccn 23159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-top 22829  df-topon 22846  df-cn 23162
This theorem is referenced by:  idcn  23192  sshauslem  23307
  Copyright terms: Public domain W3C validator