| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssidcn | Structured version Visualization version GIF version | ||
| Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| ssidcn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 23170 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) | |
| 2 | f1oi 6809 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 3 | f1of 6771 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋⟶𝑋 |
| 5 | 4 | biantrur 530 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
| 6 | 1, 5 | bitr4di 289 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
| 7 | cnvresid 6568 | . . . . . . 7 ⊢ ◡( I ↾ 𝑋) = ( I ↾ 𝑋) | |
| 8 | 7 | imaeq1i 6013 | . . . . . 6 ⊢ (◡( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥) |
| 9 | elssuni 4891 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐾 → 𝑥 ⊆ ∪ 𝐾) | |
| 10 | 9 | adantl 481 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ ∪ 𝐾) |
| 11 | toponuni 22849 | . . . . . . . . 9 ⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐾) | |
| 12 | 11 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑋 = ∪ 𝐾) |
| 13 | 10, 12 | sseqtrrd 3968 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ 𝑋) |
| 14 | resiima 6032 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 16 | 8, 15 | eqtrid 2780 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (◡( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 17 | 16 | eleq1d 2818 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → ((◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽)) |
| 18 | 17 | ralbidva 3154 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽)) |
| 19 | dfss3 3919 | . . 3 ⊢ (𝐾 ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽) | |
| 20 | 18, 19 | bitr4di 289 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝐾 ⊆ 𝐽)) |
| 21 | 6, 20 | bitrd 279 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ∪ cuni 4860 I cid 5515 ◡ccnv 5620 ↾ cres 5623 “ cima 5624 ⟶wf 6485 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 TopOnctopon 22845 Cn ccn 23159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 df-top 22829 df-topon 22846 df-cn 23162 |
| This theorem is referenced by: idcn 23192 sshauslem 23307 |
| Copyright terms: Public domain | W3C validator |