MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssidcn Structured version   Visualization version   GIF version

Theorem ssidcn 22406
Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
ssidcn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾𝐽))

Proof of Theorem ssidcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscn 22386 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
2 f1oi 6754 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1of 6716 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
42, 3ax-mp 5 . . . 4 ( I ↾ 𝑋):𝑋𝑋
54biantrur 531 . . 3 (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))
61, 5bitr4di 289 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))
7 cnvresid 6513 . . . . . . 7 ( I ↾ 𝑋) = ( I ↾ 𝑋)
87imaeq1i 5966 . . . . . 6 (( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥)
9 elssuni 4871 . . . . . . . . 9 (𝑥𝐾𝑥 𝐾)
109adantl 482 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑥 𝐾)
11 toponuni 22063 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = 𝐾)
1211ad2antlr 724 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑋 = 𝐾)
1310, 12sseqtrrd 3962 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑥𝑋)
14 resiima 5984 . . . . . . 7 (𝑥𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
1513, 14syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
168, 15eqtrid 2790 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
1716eleq1d 2823 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → ((( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝑥𝐽))
1817ralbidva 3111 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ ∀𝑥𝐾 𝑥𝐽))
19 dfss3 3909 . . 3 (𝐾𝐽 ↔ ∀𝑥𝐾 𝑥𝐽)
2018, 19bitr4di 289 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝐾𝐽))
216, 20bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887   cuni 4839   I cid 5488  ccnv 5588  cres 5591  cima 5592  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-top 22043  df-topon 22060  df-cn 22378
This theorem is referenced by:  idcn  22408  sshauslem  22523
  Copyright terms: Public domain W3C validator