![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssidcn | Structured version Visualization version GIF version |
Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
ssidcn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscn 23264 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) | |
2 | f1oi 6900 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1of 6862 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋⟶𝑋 |
5 | 4 | biantrur 530 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
6 | 1, 5 | bitr4di 289 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
7 | cnvresid 6657 | . . . . . . 7 ⊢ ◡( I ↾ 𝑋) = ( I ↾ 𝑋) | |
8 | 7 | imaeq1i 6086 | . . . . . 6 ⊢ (◡( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥) |
9 | elssuni 4961 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐾 → 𝑥 ⊆ ∪ 𝐾) | |
10 | 9 | adantl 481 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ ∪ 𝐾) |
11 | toponuni 22941 | . . . . . . . . 9 ⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐾) | |
12 | 11 | ad2antlr 726 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑋 = ∪ 𝐾) |
13 | 10, 12 | sseqtrrd 4050 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ 𝑋) |
14 | resiima 6105 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥) |
16 | 8, 15 | eqtrid 2792 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (◡( I ↾ 𝑋) “ 𝑥) = 𝑥) |
17 | 16 | eleq1d 2829 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → ((◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽)) |
18 | 17 | ralbidva 3182 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽)) |
19 | dfss3 3997 | . . 3 ⊢ (𝐾 ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽) | |
20 | 18, 19 | bitr4di 289 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝐾 ⊆ 𝐽)) |
21 | 6, 20 | bitrd 279 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ∪ cuni 4931 I cid 5592 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 TopOnctopon 22937 Cn ccn 23253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-top 22921 df-topon 22938 df-cn 23256 |
This theorem is referenced by: idcn 23286 sshauslem 23401 |
Copyright terms: Public domain | W3C validator |