MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssidcn Structured version   Visualization version   GIF version

Theorem ssidcn 23284
Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
ssidcn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾𝐽))

Proof of Theorem ssidcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscn 23264 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)))
2 f1oi 6900 . . . . 5 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1of 6862 . . . . 5 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
42, 3ax-mp 5 . . . 4 ( I ↾ 𝑋):𝑋𝑋
54biantrur 530 . . 3 (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))
61, 5bitr4di 289 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))
7 cnvresid 6657 . . . . . . 7 ( I ↾ 𝑋) = ( I ↾ 𝑋)
87imaeq1i 6086 . . . . . 6 (( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥)
9 elssuni 4961 . . . . . . . . 9 (𝑥𝐾𝑥 𝐾)
109adantl 481 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑥 𝐾)
11 toponuni 22941 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = 𝐾)
1211ad2antlr 726 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑋 = 𝐾)
1310, 12sseqtrrd 4050 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → 𝑥𝑋)
14 resiima 6105 . . . . . . 7 (𝑥𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
1513, 14syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
168, 15eqtrid 2792 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥)
1716eleq1d 2829 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥𝐾) → ((( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝑥𝐽))
1817ralbidva 3182 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ ∀𝑥𝐾 𝑥𝐽))
19 dfss3 3997 . . 3 (𝐾𝐽 ↔ ∀𝑥𝐾 𝑥𝐽)
2018, 19bitr4di 289 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥𝐾 (( I ↾ 𝑋) “ 𝑥) ∈ 𝐽𝐾𝐽))
216, 20bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976   cuni 4931   I cid 5592  ccnv 5699  cres 5702  cima 5703  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  TopOnctopon 22937   Cn ccn 23253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-cn 23256
This theorem is referenced by:  idcn  23286  sshauslem  23401
  Copyright terms: Public domain W3C validator