| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssidcn | Structured version Visualization version GIF version | ||
| Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| ssidcn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 23129 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) | |
| 2 | f1oi 6841 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 3 | f1of 6803 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋⟶𝑋 |
| 5 | 4 | biantrur 530 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
| 6 | 1, 5 | bitr4di 289 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
| 7 | cnvresid 6598 | . . . . . . 7 ⊢ ◡( I ↾ 𝑋) = ( I ↾ 𝑋) | |
| 8 | 7 | imaeq1i 6031 | . . . . . 6 ⊢ (◡( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥) |
| 9 | elssuni 4904 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐾 → 𝑥 ⊆ ∪ 𝐾) | |
| 10 | 9 | adantl 481 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ ∪ 𝐾) |
| 11 | toponuni 22808 | . . . . . . . . 9 ⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐾) | |
| 12 | 11 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑋 = ∪ 𝐾) |
| 13 | 10, 12 | sseqtrrd 3987 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ 𝑋) |
| 14 | resiima 6050 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 16 | 8, 15 | eqtrid 2777 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (◡( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 17 | 16 | eleq1d 2814 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → ((◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽)) |
| 18 | 17 | ralbidva 3155 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽)) |
| 19 | dfss3 3938 | . . 3 ⊢ (𝐾 ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽) | |
| 20 | 18, 19 | bitr4di 289 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝐾 ⊆ 𝐽)) |
| 21 | 6, 20 | bitrd 279 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ∪ cuni 4874 I cid 5535 ◡ccnv 5640 ↾ cres 5643 “ cima 5644 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 TopOnctopon 22804 Cn ccn 23118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-top 22788 df-topon 22805 df-cn 23121 |
| This theorem is referenced by: idcn 23151 sshauslem 23266 |
| Copyright terms: Public domain | W3C validator |