Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ushggricedg Structured version   Visualization version   GIF version

Theorem ushggricedg 47921
Description: A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022.)
Hypotheses
Ref Expression
ushggricedg.v 𝑉 = (Vtx‘𝐺)
ushggricedg.e 𝐸 = (Edg‘𝐺)
ushggricedg.s 𝐻 = ⟨𝑉, ( I ↾ 𝐸)⟩
Assertion
Ref Expression
ushggricedg (𝐺 ∈ USHGraph → 𝐺𝑔𝑟 𝐻)

Proof of Theorem ushggricedg
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ushggricedg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6836 . . . . 5 𝑉 ∈ V
32a1i 11 . . . 4 (𝐺 ∈ USHGraph → 𝑉 ∈ V)
43resiexd 7152 . . 3 (𝐺 ∈ USHGraph → ( I ↾ 𝑉) ∈ V)
5 f1oi 6802 . . . . . 6 ( I ↾ 𝑉):𝑉1-1-onto𝑉
65a1i 11 . . . . 5 (𝐺 ∈ USHGraph → ( I ↾ 𝑉):𝑉1-1-onto𝑉)
7 ushggricedg.s . . . . . . . 8 𝐻 = ⟨𝑉, ( I ↾ 𝐸)⟩
87fveq2i 6825 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩)
9 ushggricedg.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
109fvexi 6836 . . . . . . . . . 10 𝐸 ∈ V
11 resiexg 7845 . . . . . . . . . 10 (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V)
1210, 11ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐸) ∈ V
132, 12pm3.2i 470 . . . . . . . 8 (𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V)
14 opvtxfv 28949 . . . . . . . 8 ((𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
1513, 14mp1i 13 . . . . . . 7 (𝐺 ∈ USHGraph → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
168, 15eqtrid 2776 . . . . . 6 (𝐺 ∈ USHGraph → (Vtx‘𝐻) = 𝑉)
1716f1oeq3d 6761 . . . . 5 (𝐺 ∈ USHGraph → (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉1-1-onto𝑉))
186, 17mpbird 257 . . . 4 (𝐺 ∈ USHGraph → ( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻))
19 fvexd 6837 . . . . 5 (𝐺 ∈ USHGraph → (iEdg‘𝐺) ∈ V)
20 eqid 2729 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
211, 20ushgrf 29008 . . . . . . . 8 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}))
22 f1f1orn 6775 . . . . . . . 8 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺))
2321, 22syl 17 . . . . . . 7 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺))
247fveq2i 6825 . . . . . . . . . . 11 (iEdg‘𝐻) = (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)
2510a1i 11 . . . . . . . . . . . . 13 (𝐺 ∈ USHGraph → 𝐸 ∈ V)
2625resiexd 7152 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → ( I ↾ 𝐸) ∈ V)
27 opiedgfv 28952 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
282, 26, 27sylancr 587 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2924, 28eqtrid 2776 . . . . . . . . . 10 (𝐺 ∈ USHGraph → (iEdg‘𝐻) = ( I ↾ 𝐸))
3029dmeqd 5848 . . . . . . . . 9 (𝐺 ∈ USHGraph → dom (iEdg‘𝐻) = dom ( I ↾ 𝐸))
31 dmresi 6003 . . . . . . . . . 10 dom ( I ↾ 𝐸) = 𝐸
329a1i 11 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → 𝐸 = (Edg‘𝐺))
33 edgval 28994 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
3432, 33eqtrdi 2780 . . . . . . . . . 10 (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺))
3531, 34eqtrid 2776 . . . . . . . . 9 (𝐺 ∈ USHGraph → dom ( I ↾ 𝐸) = ran (iEdg‘𝐺))
3630, 35eqtrd 2764 . . . . . . . 8 (𝐺 ∈ USHGraph → dom (iEdg‘𝐻) = ran (iEdg‘𝐺))
3736f1oeq3d 6761 . . . . . . 7 (𝐺 ∈ USHGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺)))
3823, 37mpbird 257 . . . . . 6 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
39 ushgruhgr 29014 . . . . . . . . . 10 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
401, 20uhgrss 29009 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉)
4139, 40sylan 580 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉)
42 resiima 6027 . . . . . . . . 9 (((iEdg‘𝐺)‘𝑖) ⊆ 𝑉 → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
4341, 42syl 17 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
44 f1f 6720 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
4521, 44syl 17 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
4645ffund 6656 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → Fun (iEdg‘𝐺))
47 fvelrn 7010 . . . . . . . . . . 11 ((Fun (iEdg‘𝐺) ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺))
4846, 47sylan 580 . . . . . . . . . 10 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺))
499, 33eqtri 2752 . . . . . . . . . 10 𝐸 = ran (iEdg‘𝐺)
5048, 49eleqtrrdi 2839 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐸)
51 fvresi 7109 . . . . . . . . 9 (((iEdg‘𝐺)‘𝑖) ∈ 𝐸 → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
5250, 51syl 17 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
5310a1i 11 . . . . . . . . . . . 12 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → 𝐸 ∈ V)
5453resiexd 7152 . . . . . . . . . . 11 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) ∈ V)
552, 54, 27sylancr 587 . . . . . . . . . 10 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
5624, 55eqtr2id 2777 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) = (iEdg‘𝐻))
5756fveq1d 6824 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
5843, 52, 573eqtr2d 2770 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
5958ralrimiva 3121 . . . . . 6 (𝐺 ∈ USHGraph → ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6038, 59jca 511 . . . . 5 (𝐺 ∈ USHGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
61 f1oeq1 6752 . . . . . 6 (𝑔 = (iEdg‘𝐺) → (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
62 fveq1 6821 . . . . . . . . 9 (𝑔 = (iEdg‘𝐺) → (𝑔𝑖) = ((iEdg‘𝐺)‘𝑖))
6362fveq2d 6826 . . . . . . . 8 (𝑔 = (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑔𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6463eqeq2d 2740 . . . . . . 7 (𝑔 = (iEdg‘𝐺) → ((( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
6564ralbidv 3152 . . . . . 6 (𝑔 = (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
6661, 65anbi12d 632 . . . . 5 (𝑔 = (iEdg‘𝐺) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))))
6719, 60, 66spcedv 3553 . . . 4 (𝐺 ∈ USHGraph → ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
6818, 67jca 511 . . 3 (𝐺 ∈ USHGraph → (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
69 f1oeq1 6752 . . . 4 (𝑓 = ( I ↾ 𝑉) → (𝑓:𝑉1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻)))
70 imaeq1 6006 . . . . . . . 8 (𝑓 = ( I ↾ 𝑉) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)))
7170eqeq1d 2731 . . . . . . 7 (𝑓 = ( I ↾ 𝑉) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
7271ralbidv 3152 . . . . . 6 (𝑓 = ( I ↾ 𝑉) → (∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
7372anbi2d 630 . . . . 5 (𝑓 = ( I ↾ 𝑉) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
7473exbidv 1921 . . . 4 (𝑓 = ( I ↾ 𝑉) → (∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
7569, 74anbi12d 632 . . 3 (𝑓 = ( I ↾ 𝑉) → ((𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))) ↔ (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
764, 68, 75spcedv 3553 . 2 (𝐺 ∈ USHGraph → ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
77 opex 5407 . . . 4 𝑉, ( I ↾ 𝐸)⟩ ∈ V
787, 77eqeltri 2824 . . 3 𝐻 ∈ V
79 eqid 2729 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
80 eqid 2729 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
811, 79, 20, 80dfgric2 47909 . . 3 ((𝐺 ∈ USHGraph ∧ 𝐻 ∈ V) → (𝐺𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
8278, 81mpan2 691 . 2 (𝐺 ∈ USHGraph → (𝐺𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
8376, 82mpbird 257 1 (𝐺 ∈ USHGraph → 𝐺𝑔𝑟 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3436  cdif 3900  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577  cop 4583   class class class wbr 5092   I cid 5513  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6476  wf 6478  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  Vtxcvtx 28941  iEdgciedg 28942  Edgcedg 28992  UHGraphcuhgr 29001  USHGraphcushgr 29002  𝑔𝑟 cgric 47870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-1o 8388  df-map 8755  df-vtx 28943  df-iedg 28944  df-edg 28993  df-uhgr 29003  df-ushgr 29004  df-grim 47872  df-gric 47875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator