Step | Hyp | Ref
| Expression |
1 | | ushggricedg.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | fvexi 6910 |
. . . . 5
⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝐺 ∈ USHGraph → 𝑉 ∈ V) |
4 | 3 | resiexd 7228 |
. . 3
⊢ (𝐺 ∈ USHGraph → ( I
↾ 𝑉) ∈
V) |
5 | | f1oi 6876 |
. . . . . 6
⊢ ( I
↾ 𝑉):𝑉–1-1-onto→𝑉 |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝐺 ∈ USHGraph → ( I
↾ 𝑉):𝑉–1-1-onto→𝑉) |
7 | | ushggricedg.s |
. . . . . . . 8
⊢ 𝐻 = 〈𝑉, ( I ↾ 𝐸)〉 |
8 | 7 | fveq2i 6899 |
. . . . . . 7
⊢
(Vtx‘𝐻) =
(Vtx‘〈𝑉, ( I
↾ 𝐸)〉) |
9 | | ushggricedg.e |
. . . . . . . . . . 11
⊢ 𝐸 = (Edg‘𝐺) |
10 | 9 | fvexi 6910 |
. . . . . . . . . 10
⊢ 𝐸 ∈ V |
11 | | resiexg 7920 |
. . . . . . . . . 10
⊢ (𝐸 ∈ V → ( I ↾
𝐸) ∈
V) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
⊢ ( I
↾ 𝐸) ∈
V |
13 | 2, 12 | pm3.2i 469 |
. . . . . . . 8
⊢ (𝑉 ∈ V ∧ ( I ↾
𝐸) ∈
V) |
14 | | opvtxfv 28889 |
. . . . . . . 8
⊢ ((𝑉 ∈ V ∧ ( I ↾
𝐸) ∈ V) →
(Vtx‘〈𝑉, ( I
↾ 𝐸)〉) = 𝑉) |
15 | 13, 14 | mp1i 13 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph →
(Vtx‘〈𝑉, ( I
↾ 𝐸)〉) = 𝑉) |
16 | 8, 15 | eqtrid 2777 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph →
(Vtx‘𝐻) = 𝑉) |
17 | 16 | f1oeq3d 6835 |
. . . . 5
⊢ (𝐺 ∈ USHGraph → (( I
↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉)) |
18 | 6, 17 | mpbird 256 |
. . . 4
⊢ (𝐺 ∈ USHGraph → ( I
↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻)) |
19 | | fvexd 6911 |
. . . . 5
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺) ∈
V) |
20 | | eqid 2725 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
21 | 1, 20 | ushgrf 28948 |
. . . . . . . 8
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅})) |
22 | | f1f1orn 6849 |
. . . . . . . 8
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran
(iEdg‘𝐺)) |
23 | 21, 22 | syl 17 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺)) |
24 | 7 | fveq2i 6899 |
. . . . . . . . . . 11
⊢
(iEdg‘𝐻) =
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉) |
25 | 10 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USHGraph → 𝐸 ∈ V) |
26 | 25 | resiexd 7228 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph → ( I
↾ 𝐸) ∈
V) |
27 | | opiedgfv 28892 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ V ∧ ( I ↾
𝐸) ∈ V) →
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉) = ( I
↾ 𝐸)) |
28 | 2, 26, 27 | sylancr 585 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph →
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉) = ( I
↾ 𝐸)) |
29 | 24, 28 | eqtrid 2777 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐻) = ( I
↾ 𝐸)) |
30 | 29 | dmeqd 5908 |
. . . . . . . . 9
⊢ (𝐺 ∈ USHGraph → dom
(iEdg‘𝐻) = dom ( I
↾ 𝐸)) |
31 | | dmresi 6056 |
. . . . . . . . . 10
⊢ dom ( I
↾ 𝐸) = 𝐸 |
32 | 9 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph → 𝐸 = (Edg‘𝐺)) |
33 | | edgval 28934 |
. . . . . . . . . . 11
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
34 | 32, 33 | eqtrdi 2781 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺)) |
35 | 31, 34 | eqtrid 2777 |
. . . . . . . . 9
⊢ (𝐺 ∈ USHGraph → dom ( I
↾ 𝐸) = ran
(iEdg‘𝐺)) |
36 | 30, 35 | eqtrd 2765 |
. . . . . . . 8
⊢ (𝐺 ∈ USHGraph → dom
(iEdg‘𝐻) = ran
(iEdg‘𝐺)) |
37 | 36 | f1oeq3d 6835 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph →
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran
(iEdg‘𝐺))) |
38 | 23, 37 | mpbird 256 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) |
39 | | ushgruhgr 28954 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph → 𝐺 ∈
UHGraph) |
40 | 1, 20 | uhgrss 28949 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉) |
41 | 39, 40 | sylan 578 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉) |
42 | | resiima 6080 |
. . . . . . . . 9
⊢
(((iEdg‘𝐺)‘𝑖) ⊆ 𝑉 → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
44 | | f1f 6793 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖
{∅})) |
45 | 21, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅})) |
46 | 45 | ffund 6727 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph → Fun
(iEdg‘𝐺)) |
47 | | fvelrn 7085 |
. . . . . . . . . . 11
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺)) |
48 | 46, 47 | sylan 578 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺)) |
49 | 9, 33 | eqtri 2753 |
. . . . . . . . . 10
⊢ 𝐸 = ran (iEdg‘𝐺) |
50 | 48, 49 | eleqtrrdi 2836 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐸) |
51 | | fvresi 7182 |
. . . . . . . . 9
⊢
(((iEdg‘𝐺)‘𝑖) ∈ 𝐸 → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
52 | 50, 51 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
53 | 10 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → 𝐸 ∈ V) |
54 | 53 | resiexd 7228 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) ∈ V) |
55 | 2, 54, 27 | sylancr 585 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) →
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉) = ( I
↾ 𝐸)) |
56 | 24, 55 | eqtr2id 2778 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) = (iEdg‘𝐻)) |
57 | 56 | fveq1d 6898 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))) |
58 | 43, 52, 57 | 3eqtr2d 2771 |
. . . . . . 7
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))) |
59 | 58 | ralrimiva 3135 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph →
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))) |
60 | 38, 59 | jca 510 |
. . . . 5
⊢ (𝐺 ∈ USHGraph →
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))) |
61 | | f1oeq1 6826 |
. . . . . 6
⊢ (𝑔 = (iEdg‘𝐺) → (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ↔
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))) |
62 | | fveq1 6895 |
. . . . . . . . 9
⊢ (𝑔 = (iEdg‘𝐺) → (𝑔‘𝑖) = ((iEdg‘𝐺)‘𝑖)) |
63 | 62 | fveq2d 6900 |
. . . . . . . 8
⊢ (𝑔 = (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑔‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))) |
64 | 63 | eqeq2d 2736 |
. . . . . . 7
⊢ (𝑔 = (iEdg‘𝐺) → ((( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))) |
65 | 64 | ralbidv 3167 |
. . . . . 6
⊢ (𝑔 = (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))) |
66 | 61, 65 | anbi12d 630 |
. . . . 5
⊢ (𝑔 = (iEdg‘𝐺) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))) ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))) |
67 | 19, 60, 66 | spcedv 3582 |
. . . 4
⊢ (𝐺 ∈ USHGraph →
∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))) |
68 | 18, 67 | jca 510 |
. . 3
⊢ (𝐺 ∈ USHGraph → (( I
↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))))) |
69 | | f1oeq1 6826 |
. . . 4
⊢ (𝑓 = ( I ↾ 𝑉) → (𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻))) |
70 | | imaeq1 6059 |
. . . . . . . 8
⊢ (𝑓 = ( I ↾ 𝑉) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖))) |
71 | 70 | eqeq1d 2727 |
. . . . . . 7
⊢ (𝑓 = ( I ↾ 𝑉) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))) |
72 | 71 | ralbidv 3167 |
. . . . . 6
⊢ (𝑓 = ( I ↾ 𝑉) → (∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))) |
73 | 72 | anbi2d 628 |
. . . . 5
⊢ (𝑓 = ( I ↾ 𝑉) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))) ↔ (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))))) |
74 | 73 | exbidv 1916 |
. . . 4
⊢ (𝑓 = ( I ↾ 𝑉) → (∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))))) |
75 | 69, 74 | anbi12d 630 |
. . 3
⊢ (𝑓 = ( I ↾ 𝑉) → ((𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))) ↔ (( I ↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))))) |
76 | 4, 68, 75 | spcedv 3582 |
. 2
⊢ (𝐺 ∈ USHGraph →
∃𝑓(𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))))) |
77 | | opex 5466 |
. . . 4
⊢
〈𝑉, ( I ↾
𝐸)〉 ∈
V |
78 | 7, 77 | eqeltri 2821 |
. . 3
⊢ 𝐻 ∈ V |
79 | | eqid 2725 |
. . . 4
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
80 | | eqid 2725 |
. . . 4
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
81 | 1, 79, 20, 80 | dfgric2 47367 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝐻 ∈ V) → (𝐺
≃𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))))) |
82 | 78, 81 | mpan2 689 |
. 2
⊢ (𝐺 ∈ USHGraph → (𝐺
≃𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))))) |
83 | 76, 82 | mpbird 256 |
1
⊢ (𝐺 ∈ USHGraph → 𝐺
≃𝑔𝑟 𝐻) |