Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ushggricedg Structured version   Visualization version   GIF version

Theorem ushggricedg 47379
Description: A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022.)
Hypotheses
Ref Expression
ushggricedg.v 𝑉 = (Vtx‘𝐺)
ushggricedg.e 𝐸 = (Edg‘𝐺)
ushggricedg.s 𝐻 = ⟨𝑉, ( I ↾ 𝐸)⟩
Assertion
Ref Expression
ushggricedg (𝐺 ∈ USHGraph → 𝐺𝑔𝑟 𝐻)

Proof of Theorem ushggricedg
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ushggricedg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6910 . . . . 5 𝑉 ∈ V
32a1i 11 . . . 4 (𝐺 ∈ USHGraph → 𝑉 ∈ V)
43resiexd 7228 . . 3 (𝐺 ∈ USHGraph → ( I ↾ 𝑉) ∈ V)
5 f1oi 6876 . . . . . 6 ( I ↾ 𝑉):𝑉1-1-onto𝑉
65a1i 11 . . . . 5 (𝐺 ∈ USHGraph → ( I ↾ 𝑉):𝑉1-1-onto𝑉)
7 ushggricedg.s . . . . . . . 8 𝐻 = ⟨𝑉, ( I ↾ 𝐸)⟩
87fveq2i 6899 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩)
9 ushggricedg.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
109fvexi 6910 . . . . . . . . . 10 𝐸 ∈ V
11 resiexg 7920 . . . . . . . . . 10 (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V)
1210, 11ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐸) ∈ V
132, 12pm3.2i 469 . . . . . . . 8 (𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V)
14 opvtxfv 28889 . . . . . . . 8 ((𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
1513, 14mp1i 13 . . . . . . 7 (𝐺 ∈ USHGraph → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
168, 15eqtrid 2777 . . . . . 6 (𝐺 ∈ USHGraph → (Vtx‘𝐻) = 𝑉)
1716f1oeq3d 6835 . . . . 5 (𝐺 ∈ USHGraph → (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉1-1-onto𝑉))
186, 17mpbird 256 . . . 4 (𝐺 ∈ USHGraph → ( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻))
19 fvexd 6911 . . . . 5 (𝐺 ∈ USHGraph → (iEdg‘𝐺) ∈ V)
20 eqid 2725 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
211, 20ushgrf 28948 . . . . . . . 8 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}))
22 f1f1orn 6849 . . . . . . . 8 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺))
2321, 22syl 17 . . . . . . 7 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺))
247fveq2i 6899 . . . . . . . . . . 11 (iEdg‘𝐻) = (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)
2510a1i 11 . . . . . . . . . . . . 13 (𝐺 ∈ USHGraph → 𝐸 ∈ V)
2625resiexd 7228 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → ( I ↾ 𝐸) ∈ V)
27 opiedgfv 28892 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
282, 26, 27sylancr 585 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
2924, 28eqtrid 2777 . . . . . . . . . 10 (𝐺 ∈ USHGraph → (iEdg‘𝐻) = ( I ↾ 𝐸))
3029dmeqd 5908 . . . . . . . . 9 (𝐺 ∈ USHGraph → dom (iEdg‘𝐻) = dom ( I ↾ 𝐸))
31 dmresi 6056 . . . . . . . . . 10 dom ( I ↾ 𝐸) = 𝐸
329a1i 11 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → 𝐸 = (Edg‘𝐺))
33 edgval 28934 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
3432, 33eqtrdi 2781 . . . . . . . . . 10 (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺))
3531, 34eqtrid 2777 . . . . . . . . 9 (𝐺 ∈ USHGraph → dom ( I ↾ 𝐸) = ran (iEdg‘𝐺))
3630, 35eqtrd 2765 . . . . . . . 8 (𝐺 ∈ USHGraph → dom (iEdg‘𝐻) = ran (iEdg‘𝐺))
3736f1oeq3d 6835 . . . . . . 7 (𝐺 ∈ USHGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺)))
3823, 37mpbird 256 . . . . . 6 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
39 ushgruhgr 28954 . . . . . . . . . 10 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
401, 20uhgrss 28949 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉)
4139, 40sylan 578 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉)
42 resiima 6080 . . . . . . . . 9 (((iEdg‘𝐺)‘𝑖) ⊆ 𝑉 → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
4341, 42syl 17 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
44 f1f 6793 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
4521, 44syl 17 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
4645ffund 6727 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → Fun (iEdg‘𝐺))
47 fvelrn 7085 . . . . . . . . . . 11 ((Fun (iEdg‘𝐺) ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺))
4846, 47sylan 578 . . . . . . . . . 10 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺))
499, 33eqtri 2753 . . . . . . . . . 10 𝐸 = ran (iEdg‘𝐺)
5048, 49eleqtrrdi 2836 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐸)
51 fvresi 7182 . . . . . . . . 9 (((iEdg‘𝐺)‘𝑖) ∈ 𝐸 → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
5250, 51syl 17 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
5310a1i 11 . . . . . . . . . . . 12 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → 𝐸 ∈ V)
5453resiexd 7228 . . . . . . . . . . 11 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) ∈ V)
552, 54, 27sylancr 585 . . . . . . . . . 10 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
5624, 55eqtr2id 2778 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) = (iEdg‘𝐻))
5756fveq1d 6898 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
5843, 52, 573eqtr2d 2771 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
5958ralrimiva 3135 . . . . . 6 (𝐺 ∈ USHGraph → ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6038, 59jca 510 . . . . 5 (𝐺 ∈ USHGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
61 f1oeq1 6826 . . . . . 6 (𝑔 = (iEdg‘𝐺) → (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
62 fveq1 6895 . . . . . . . . 9 (𝑔 = (iEdg‘𝐺) → (𝑔𝑖) = ((iEdg‘𝐺)‘𝑖))
6362fveq2d 6900 . . . . . . . 8 (𝑔 = (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑔𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6463eqeq2d 2736 . . . . . . 7 (𝑔 = (iEdg‘𝐺) → ((( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
6564ralbidv 3167 . . . . . 6 (𝑔 = (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
6661, 65anbi12d 630 . . . . 5 (𝑔 = (iEdg‘𝐺) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))))
6719, 60, 66spcedv 3582 . . . 4 (𝐺 ∈ USHGraph → ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
6818, 67jca 510 . . 3 (𝐺 ∈ USHGraph → (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
69 f1oeq1 6826 . . . 4 (𝑓 = ( I ↾ 𝑉) → (𝑓:𝑉1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻)))
70 imaeq1 6059 . . . . . . . 8 (𝑓 = ( I ↾ 𝑉) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)))
7170eqeq1d 2727 . . . . . . 7 (𝑓 = ( I ↾ 𝑉) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
7271ralbidv 3167 . . . . . 6 (𝑓 = ( I ↾ 𝑉) → (∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
7372anbi2d 628 . . . . 5 (𝑓 = ( I ↾ 𝑉) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
7473exbidv 1916 . . . 4 (𝑓 = ( I ↾ 𝑉) → (∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
7569, 74anbi12d 630 . . 3 (𝑓 = ( I ↾ 𝑉) → ((𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))) ↔ (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
764, 68, 75spcedv 3582 . 2 (𝐺 ∈ USHGraph → ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
77 opex 5466 . . . 4 𝑉, ( I ↾ 𝐸)⟩ ∈ V
787, 77eqeltri 2821 . . 3 𝐻 ∈ V
79 eqid 2725 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
80 eqid 2725 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
811, 79, 20, 80dfgric2 47367 . . 3 ((𝐺 ∈ USHGraph ∧ 𝐻 ∈ V) → (𝐺𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
8278, 81mpan2 689 . 2 (𝐺 ∈ USHGraph → (𝐺𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
8376, 82mpbird 256 1 (𝐺 ∈ USHGraph → 𝐺𝑔𝑟 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3050  Vcvv 3461  cdif 3941  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630  cop 4636   class class class wbr 5149   I cid 5575  dom cdm 5678  ran crn 5679  cres 5680  cima 5681  Fun wfun 6543  wf 6545  1-1wf1 6546  1-1-ontowf1o 6548  cfv 6549  Vtxcvtx 28881  iEdgciedg 28882  Edgcedg 28932  UHGraphcuhgr 28941  USHGraphcushgr 28942  𝑔𝑟 cgric 47346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-1o 8487  df-map 8847  df-vtx 28883  df-iedg 28884  df-edg 28933  df-uhgr 28943  df-ushgr 28944  df-grim 47348  df-gric 47351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator