MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reumodprminv Structured version   Visualization version   GIF version

Theorem reumodprminv 16572
Description: For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.)
Assertion
Ref Expression
reumodprminv ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1)
Distinct variable groups:   𝑖,𝑁   𝑃,𝑖

Proof of Theorem reumodprminv
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℙ)
2 elfzoelz 13457 . . . . 5 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
32adantl 482 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑁 ∈ ℤ)
4 prmnn 16446 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5 prmz 16447 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6 fzoval 13458 . . . . . . . 8 (𝑃 ∈ ℤ → (1..^𝑃) = (1...(𝑃 − 1)))
75, 6syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (1..^𝑃) = (1...(𝑃 − 1)))
87eleq2d 2823 . . . . . 6 (𝑃 ∈ ℙ → (𝑁 ∈ (1..^𝑃) ↔ 𝑁 ∈ (1...(𝑃 − 1))))
98biimpa 477 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑁 ∈ (1...(𝑃 − 1)))
10 fzm1ndvds 16100 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
114, 9, 10syl2an2r 682 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ¬ 𝑃𝑁)
12 eqid 2737 . . . . . . 7 ((𝑁↑(𝑃 − 2)) mod 𝑃) = ((𝑁↑(𝑃 − 2)) mod 𝑃)
1312modprminv 16567 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
1413simpld 495 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
1513simprd 496 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
16 1eluzge0 12702 . . . . . . . . . . 11 1 ∈ (ℤ‘0)
17 fzss1 13365 . . . . . . . . . . 11 (1 ∈ (ℤ‘0) → (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
1816, 17mp1i 13 . . . . . . . . . 10 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
1918sseld 3929 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑠 ∈ (1...(𝑃 − 1)) → 𝑠 ∈ (0...(𝑃 − 1))))
20193ad2ant1 1132 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (𝑠 ∈ (1...(𝑃 − 1)) → 𝑠 ∈ (0...(𝑃 − 1))))
2120imdistani 569 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (1...(𝑃 − 1))) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (0...(𝑃 − 1))))
2212modprminveq 16568 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1) ↔ 𝑠 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
2322biimpa 477 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ (𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1)) → 𝑠 = ((𝑁↑(𝑃 − 2)) mod 𝑃))
2423eqcomd 2743 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ (𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1)) → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)
2524expr 457 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (0...(𝑃 − 1))) → (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2621, 25syl 17 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (1...(𝑃 − 1))) → (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2726ralrimiva 3140 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2814, 15, 27jca32 516 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
291, 3, 11, 28syl3anc 1370 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
30 oveq2 7321 . . . . . . 7 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (𝑁 · 𝑖) = (𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3130oveq1d 7328 . . . . . 6 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((𝑁 · 𝑖) mod 𝑃) = ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3231eqeq1d 2739 . . . . 5 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
33 eqeq1 2741 . . . . . . 7 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (𝑖 = 𝑠 ↔ ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
3433imbi2d 340 . . . . . 6 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠) ↔ (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)))
3534ralbidv 3171 . . . . 5 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠) ↔ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)))
3632, 35anbi12d 631 . . . 4 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)) ↔ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
3736rspcev 3570 . . 3 ((((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))) → ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
3829, 37syl 17 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
39 oveq2 7321 . . . . 5 (𝑖 = 𝑠 → (𝑁 · 𝑖) = (𝑁 · 𝑠))
4039oveq1d 7328 . . . 4 (𝑖 = 𝑠 → ((𝑁 · 𝑖) mod 𝑃) = ((𝑁 · 𝑠) mod 𝑃))
4140eqeq1d 2739 . . 3 (𝑖 = 𝑠 → (((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ((𝑁 · 𝑠) mod 𝑃) = 1))
4241reu8 3677 . 2 (∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
4338, 42sylibr 233 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3062  wrex 3071  ∃!wreu 3348  wss 3896   class class class wbr 5085  cfv 6463  (class class class)co 7313  0cc0 10941  1c1 10942   · cmul 10946  cmin 11275  cn 12043  2c2 12098  cz 12389  cuz 12652  ...cfz 13309  ..^cfzo 13452   mod cmo 13659  cexp 13852  cdvds 16032  cprime 16443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-oadd 8346  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-sup 9269  df-inf 9270  df-dju 9727  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-n0 12304  df-xnn0 12376  df-z 12390  df-uz 12653  df-rp 12801  df-fz 13310  df-fzo 13453  df-fl 13582  df-mod 13660  df-seq 13792  df-exp 13853  df-hash 14115  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-dvds 16033  df-gcd 16271  df-prm 16444  df-phi 16534
This theorem is referenced by:  modprm0  16573
  Copyright terms: Public domain W3C validator