Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclquadeu Structured version   Visualization version   GIF version

 Description: Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
itsclquadb.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclquadb.t 𝑇 = -(2 · (𝐵 · 𝐶))
itsclquadb.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itsclquadeu ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑄   𝑥,𝑅   𝑥,𝑇   𝑥,𝑈   𝑥,𝑌

Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7136 . . . . . . 7 (𝑥 = 𝑧 → (𝑥↑2) = (𝑧↑2))
21oveq1d 7144 . . . . . 6 (𝑥 = 𝑧 → ((𝑥↑2) + (𝑌↑2)) = ((𝑧↑2) + (𝑌↑2)))
32eqeq1d 2822 . . . . 5 (𝑥 = 𝑧 → (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ↔ ((𝑧↑2) + (𝑌↑2)) = (𝑅↑2)))
4 oveq2 7137 . . . . . . 7 (𝑥 = 𝑧 → (𝐴 · 𝑥) = (𝐴 · 𝑧))
54oveq1d 7144 . . . . . 6 (𝑥 = 𝑧 → ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = ((𝐴 · 𝑧) + (𝐵 · 𝑌)))
65eqeq1d 2822 . . . . 5 (𝑥 = 𝑧 → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶))
73, 6anbi12d 632 . . . 4 (𝑥 = 𝑧 → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ (((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶)))
87reu8 3700 . . 3 (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
98a1i 11 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
10 id 22 . . . . . . . . . . . . . 14 (𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1110eqcoms 2828 . . . . . . . . . . . . 13 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1211eqeq2d 2831 . . . . . . . . . . . 12 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
1312adantl 484 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
14 simp11l 1280 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ∈ ℝ)
1514ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpr 487 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1715, 16remulcld 10645 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℝ)
1817recnd 10643 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℂ)
1914adantr 483 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
20 simpr 487 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2119, 20remulcld 10645 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2221adantr 483 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2322recnd 10643 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℂ)
24 simp12 1200 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐵 ∈ ℝ)
25 simp3 1134 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝑌 ∈ ℝ)
2624, 25remulcld 10645 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2726ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2827recnd 10643 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℂ)
2918, 23, 28addcan2d 10818 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ (𝐴 · 𝑧) = (𝐴 · 𝑥)))
3016recnd 10643 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
31 simplr 767 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
3231recnd 10643 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℂ)
3315recnd 10643 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
34 simp11r 1281 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ≠ 0)
3534ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
3630, 32, 33, 35mulcand 11247 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐴 · 𝑧) = (𝐴 · 𝑥) ↔ 𝑧 = 𝑥))
37 equcom 2025 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑥 = 𝑧)
3837a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑧 = 𝑥𝑥 = 𝑧))
3929, 36, 383bitrd 307 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ 𝑥 = 𝑧))
4039biimpd 231 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4140adantr 483 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4213, 41sylbid 242 . . . . . . . . . 10 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4342an32s 650 . . . . . . . . 9 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4443adantld 493 . . . . . . . 8 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4544ralrimiva 3169 . . . . . . 7 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4645ex 415 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4746adantld 493 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4847pm4.71d 564 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
4948bicomd 225 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
5049rexbidva 3281 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ ∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
51 itsclquadb.q . . 3 𝑄 = ((𝐴↑2) + (𝐵↑2))
52 itsclquadb.t . . 3 𝑇 = -(2 · (𝐵 · 𝐶))
53 itsclquadb.u . . 3 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
5451, 52, 53itsclquadb 44946 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
559, 50, 543bitrd 307 1 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   ≠ wne 3006  ∀wral 3125  ∃wrex 3126  ∃!wreu 3127  (class class class)co 7129  ℝcr 10510  0cc0 10511   + caddc 10514   · cmul 10516   − cmin 10844  -cneg 10845  2c2 11667  ℝ+crp 12364  ↑cexp 13410 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-er 8263  df-en 8484  df-dom 8485  df-sdom 8486  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-div 11272  df-nn 11613  df-2 11675  df-n0 11873  df-z 11957  df-uz 12219  df-rp 12365  df-seq 13350  df-exp 13411 This theorem is referenced by:  itscnhlinecirc02p  44955
 Copyright terms: Public domain W3C validator