Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclquadeu Structured version   Visualization version   GIF version

Theorem itsclquadeu 48511
Description: Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
itsclquadb.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclquadb.t 𝑇 = -(2 · (𝐵 · 𝐶))
itsclquadb.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itsclquadeu ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑄   𝑥,𝑅   𝑥,𝑇   𝑥,𝑈   𝑥,𝑌

Proof of Theorem itsclquadeu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . . . . 7 (𝑥 = 𝑧 → (𝑥↑2) = (𝑧↑2))
21oveq1d 7463 . . . . . 6 (𝑥 = 𝑧 → ((𝑥↑2) + (𝑌↑2)) = ((𝑧↑2) + (𝑌↑2)))
32eqeq1d 2742 . . . . 5 (𝑥 = 𝑧 → (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ↔ ((𝑧↑2) + (𝑌↑2)) = (𝑅↑2)))
4 oveq2 7456 . . . . . . 7 (𝑥 = 𝑧 → (𝐴 · 𝑥) = (𝐴 · 𝑧))
54oveq1d 7463 . . . . . 6 (𝑥 = 𝑧 → ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = ((𝐴 · 𝑧) + (𝐵 · 𝑌)))
65eqeq1d 2742 . . . . 5 (𝑥 = 𝑧 → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶))
73, 6anbi12d 631 . . . 4 (𝑥 = 𝑧 → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ (((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶)))
87reu8 3755 . . 3 (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
98a1i 11 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
10 id 22 . . . . . . . . . . . . . 14 (𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1110eqcoms 2748 . . . . . . . . . . . . 13 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1211eqeq2d 2751 . . . . . . . . . . . 12 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
1312adantl 481 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
14 simp11l 1284 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ∈ ℝ)
1514ad2antrr 725 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1715, 16remulcld 11320 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℝ)
1817recnd 11318 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℂ)
1914adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
20 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2119, 20remulcld 11320 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2322recnd 11318 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℂ)
24 simp12 1204 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐵 ∈ ℝ)
25 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝑌 ∈ ℝ)
2624, 25remulcld 11320 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2726ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2827recnd 11318 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℂ)
2918, 23, 28addcan2d 11494 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ (𝐴 · 𝑧) = (𝐴 · 𝑥)))
3016recnd 11318 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
31 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
3231recnd 11318 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℂ)
3315recnd 11318 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
34 simp11r 1285 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ≠ 0)
3534ad2antrr 725 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
3630, 32, 33, 35mulcand 11923 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐴 · 𝑧) = (𝐴 · 𝑥) ↔ 𝑧 = 𝑥))
37 equcom 2017 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑥 = 𝑧)
3837a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑧 = 𝑥𝑥 = 𝑧))
3929, 36, 383bitrd 305 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ 𝑥 = 𝑧))
4039biimpd 229 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4140adantr 480 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4213, 41sylbid 240 . . . . . . . . . 10 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4342an32s 651 . . . . . . . . 9 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4443adantld 490 . . . . . . . 8 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4544ralrimiva 3152 . . . . . . 7 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4645ex 412 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4746adantld 490 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4847pm4.71d 561 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
4948bicomd 223 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
5049rexbidva 3183 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ ∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
51 itsclquadb.q . . 3 𝑄 = ((𝐴↑2) + (𝐵↑2))
52 itsclquadb.t . . 3 𝑇 = -(2 · (𝐵 · 𝐶))
53 itsclquadb.u . . 3 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
5451, 52, 53itsclquadb 48510 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
559, 50, 543bitrd 305 1 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  2c2 12348  +crp 13057  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113
This theorem is referenced by:  itscnhlinecirc02p  48519
  Copyright terms: Public domain W3C validator