Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclquadeu Structured version   Visualization version   GIF version

Theorem itsclquadeu 47901
Description: Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
itsclquadb.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclquadb.t 𝑇 = -(2 · (𝐵 · 𝐶))
itsclquadb.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itsclquadeu ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑄   𝑥,𝑅   𝑥,𝑇   𝑥,𝑈   𝑥,𝑌

Proof of Theorem itsclquadeu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7431 . . . . . . 7 (𝑥 = 𝑧 → (𝑥↑2) = (𝑧↑2))
21oveq1d 7439 . . . . . 6 (𝑥 = 𝑧 → ((𝑥↑2) + (𝑌↑2)) = ((𝑧↑2) + (𝑌↑2)))
32eqeq1d 2729 . . . . 5 (𝑥 = 𝑧 → (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ↔ ((𝑧↑2) + (𝑌↑2)) = (𝑅↑2)))
4 oveq2 7432 . . . . . . 7 (𝑥 = 𝑧 → (𝐴 · 𝑥) = (𝐴 · 𝑧))
54oveq1d 7439 . . . . . 6 (𝑥 = 𝑧 → ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = ((𝐴 · 𝑧) + (𝐵 · 𝑌)))
65eqeq1d 2729 . . . . 5 (𝑥 = 𝑧 → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶))
73, 6anbi12d 630 . . . 4 (𝑥 = 𝑧 → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ (((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶)))
87reu8 3728 . . 3 (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
98a1i 11 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
10 id 22 . . . . . . . . . . . . . 14 (𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1110eqcoms 2735 . . . . . . . . . . . . 13 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1211eqeq2d 2738 . . . . . . . . . . . 12 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
1312adantl 480 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
14 simp11l 1281 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ∈ ℝ)
1514ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpr 483 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1715, 16remulcld 11280 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℝ)
1817recnd 11278 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℂ)
1914adantr 479 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
20 simpr 483 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2119, 20remulcld 11280 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2221adantr 479 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2322recnd 11278 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℂ)
24 simp12 1201 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐵 ∈ ℝ)
25 simp3 1135 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝑌 ∈ ℝ)
2624, 25remulcld 11280 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2726ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2827recnd 11278 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℂ)
2918, 23, 28addcan2d 11454 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ (𝐴 · 𝑧) = (𝐴 · 𝑥)))
3016recnd 11278 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
31 simplr 767 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
3231recnd 11278 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℂ)
3315recnd 11278 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
34 simp11r 1282 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ≠ 0)
3534ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
3630, 32, 33, 35mulcand 11883 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐴 · 𝑧) = (𝐴 · 𝑥) ↔ 𝑧 = 𝑥))
37 equcom 2013 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑥 = 𝑧)
3837a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑧 = 𝑥𝑥 = 𝑧))
3929, 36, 383bitrd 304 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ 𝑥 = 𝑧))
4039biimpd 228 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4140adantr 479 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4213, 41sylbid 239 . . . . . . . . . 10 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4342an32s 650 . . . . . . . . 9 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4443adantld 489 . . . . . . . 8 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4544ralrimiva 3142 . . . . . . 7 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4645ex 411 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4746adantld 489 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4847pm4.71d 560 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
4948bicomd 222 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
5049rexbidva 3172 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ ∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
51 itsclquadb.q . . 3 𝑄 = ((𝐴↑2) + (𝐵↑2))
52 itsclquadb.t . . 3 𝑇 = -(2 · (𝐵 · 𝐶))
53 itsclquadb.u . . 3 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
5451, 52, 53itsclquadb 47900 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
559, 50, 543bitrd 304 1 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2936  wral 3057  wrex 3066  ∃!wreu 3370  (class class class)co 7424  cr 11143  0cc0 11144   + caddc 11147   · cmul 11149  cmin 11480  -cneg 11481  2c2 12303  +crp 13012  cexp 14064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-seq 14005  df-exp 14065
This theorem is referenced by:  itscnhlinecirc02p  47909
  Copyright terms: Public domain W3C validator