Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclquadeu Structured version   Visualization version   GIF version

Theorem itsclquadeu 46011
Description: Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
itsclquadb.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclquadb.t 𝑇 = -(2 · (𝐵 · 𝐶))
itsclquadb.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itsclquadeu ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑄   𝑥,𝑅   𝑥,𝑇   𝑥,𝑈   𝑥,𝑌

Proof of Theorem itsclquadeu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . . . . 7 (𝑥 = 𝑧 → (𝑥↑2) = (𝑧↑2))
21oveq1d 7270 . . . . . 6 (𝑥 = 𝑧 → ((𝑥↑2) + (𝑌↑2)) = ((𝑧↑2) + (𝑌↑2)))
32eqeq1d 2740 . . . . 5 (𝑥 = 𝑧 → (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ↔ ((𝑧↑2) + (𝑌↑2)) = (𝑅↑2)))
4 oveq2 7263 . . . . . . 7 (𝑥 = 𝑧 → (𝐴 · 𝑥) = (𝐴 · 𝑧))
54oveq1d 7270 . . . . . 6 (𝑥 = 𝑧 → ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = ((𝐴 · 𝑧) + (𝐵 · 𝑌)))
65eqeq1d 2740 . . . . 5 (𝑥 = 𝑧 → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶))
73, 6anbi12d 630 . . . 4 (𝑥 = 𝑧 → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ (((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶)))
87reu8 3663 . . 3 (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
98a1i 11 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
10 id 22 . . . . . . . . . . . . . 14 (𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1110eqcoms 2746 . . . . . . . . . . . . 13 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1211eqeq2d 2749 . . . . . . . . . . . 12 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
1312adantl 481 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
14 simp11l 1282 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ∈ ℝ)
1514ad2antrr 722 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1715, 16remulcld 10936 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℝ)
1817recnd 10934 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℂ)
1914adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
20 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2119, 20remulcld 10936 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2322recnd 10934 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℂ)
24 simp12 1202 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐵 ∈ ℝ)
25 simp3 1136 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝑌 ∈ ℝ)
2624, 25remulcld 10936 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2726ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2827recnd 10934 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℂ)
2918, 23, 28addcan2d 11109 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ (𝐴 · 𝑧) = (𝐴 · 𝑥)))
3016recnd 10934 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
31 simplr 765 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
3231recnd 10934 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℂ)
3315recnd 10934 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
34 simp11r 1283 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ≠ 0)
3534ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
3630, 32, 33, 35mulcand 11538 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐴 · 𝑧) = (𝐴 · 𝑥) ↔ 𝑧 = 𝑥))
37 equcom 2022 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑥 = 𝑧)
3837a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑧 = 𝑥𝑥 = 𝑧))
3929, 36, 383bitrd 304 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ 𝑥 = 𝑧))
4039biimpd 228 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4140adantr 480 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4213, 41sylbid 239 . . . . . . . . . 10 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4342an32s 648 . . . . . . . . 9 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4443adantld 490 . . . . . . . 8 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4544ralrimiva 3107 . . . . . . 7 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4645ex 412 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4746adantld 490 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4847pm4.71d 561 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
4948bicomd 222 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
5049rexbidva 3224 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ ∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
51 itsclquadb.q . . 3 𝑄 = ((𝐴↑2) + (𝐵↑2))
52 itsclquadb.t . . 3 𝑇 = -(2 · (𝐵 · 𝐶))
53 itsclquadb.u . . 3 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
5451, 52, 53itsclquadb 46010 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
559, 50, 543bitrd 304 1 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  2c2 11958  +crp 12659  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711
This theorem is referenced by:  itscnhlinecirc02p  46019
  Copyright terms: Public domain W3C validator