Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclquadeu Structured version   Visualization version   GIF version

Theorem itsclquadeu 48772
Description: Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
itsclquadb.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclquadb.t 𝑇 = -(2 · (𝐵 · 𝐶))
itsclquadb.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itsclquadeu ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑄   𝑥,𝑅   𝑥,𝑇   𝑥,𝑈   𝑥,𝑌

Proof of Theorem itsclquadeu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7356 . . . . . . 7 (𝑥 = 𝑧 → (𝑥↑2) = (𝑧↑2))
21oveq1d 7364 . . . . . 6 (𝑥 = 𝑧 → ((𝑥↑2) + (𝑌↑2)) = ((𝑧↑2) + (𝑌↑2)))
32eqeq1d 2731 . . . . 5 (𝑥 = 𝑧 → (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ↔ ((𝑧↑2) + (𝑌↑2)) = (𝑅↑2)))
4 oveq2 7357 . . . . . . 7 (𝑥 = 𝑧 → (𝐴 · 𝑥) = (𝐴 · 𝑧))
54oveq1d 7364 . . . . . 6 (𝑥 = 𝑧 → ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = ((𝐴 · 𝑧) + (𝐵 · 𝑌)))
65eqeq1d 2731 . . . . 5 (𝑥 = 𝑧 → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶))
73, 6anbi12d 632 . . . 4 (𝑥 = 𝑧 → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ (((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶)))
87reu8 3693 . . 3 (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
98a1i 11 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
10 id 22 . . . . . . . . . . . . . 14 (𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1110eqcoms 2737 . . . . . . . . . . . . 13 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑌)))
1211eqeq2d 2740 . . . . . . . . . . . 12 (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
1312adantl 481 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌))))
14 simp11l 1285 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ∈ ℝ)
1514ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1715, 16remulcld 11145 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℝ)
1817recnd 11143 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑧) ∈ ℂ)
1914adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
20 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2119, 20remulcld 11145 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℝ)
2322recnd 11143 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐴 · 𝑥) ∈ ℂ)
24 simp12 1205 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐵 ∈ ℝ)
25 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝑌 ∈ ℝ)
2624, 25remulcld 11145 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2726ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
2827recnd 11143 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℂ)
2918, 23, 28addcan2d 11320 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ (𝐴 · 𝑧) = (𝐴 · 𝑥)))
3016recnd 11143 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
31 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
3231recnd 11143 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℂ)
3315recnd 11143 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
34 simp11r 1286 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ≠ 0)
3534ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
3630, 32, 33, 35mulcand 11753 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐴 · 𝑧) = (𝐴 · 𝑥) ↔ 𝑧 = 𝑥))
37 equcom 2018 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑥 = 𝑧)
3837a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑧 = 𝑥𝑥 = 𝑧))
3929, 36, 383bitrd 305 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) ↔ 𝑥 = 𝑧))
4039biimpd 229 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4140adantr 480 . . . . . . . . . . 11 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = ((𝐴 · 𝑥) + (𝐵 · 𝑌)) → 𝑥 = 𝑧))
4213, 41sylbid 240 . . . . . . . . . 10 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4342an32s 652 . . . . . . . . 9 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → (((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶𝑥 = 𝑧))
4443adantld 490 . . . . . . . 8 (((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ 𝑧 ∈ ℝ) → ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4544ralrimiva 3121 . . . . . . 7 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))
4645ex 412 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4746adantld 490 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)))
4847pm4.71d 561 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧))))
4948bicomd 223 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
5049rexbidva 3151 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ∧ ∀𝑧 ∈ ℝ ((((𝑧↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑧) + (𝐵 · 𝑌)) = 𝐶) → 𝑥 = 𝑧)) ↔ ∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
51 itsclquadb.q . . 3 𝑄 = ((𝐴↑2) + (𝐵↑2))
52 itsclquadb.t . . 3 𝑇 = -(2 · (𝐵 · 𝐶))
53 itsclquadb.u . . 3 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
5451, 52, 53itsclquadb 48771 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
559, 50, 543bitrd 305 1 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3341  (class class class)co 7349  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348  2c2 12183  +crp 12893  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969
This theorem is referenced by:  itscnhlinecirc02p  48780
  Copyright terms: Public domain W3C validator