MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zbtwnre Structured version   Visualization version   GIF version

Theorem zbtwnre 12340
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zbtwnre (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem zbtwnre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 zmin 12338 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2 zre 11979 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
3 zre 11979 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
4 peano2rem 10947 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℝ)
6 ltletr 10726 . . . . . . . . . . . . . 14 (((𝑥 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
75, 6syl3an1 1159 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
873expa 1114 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
92, 8sylan2 594 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
10 zlem1lt 12028 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
1110adantlr 713 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
129, 11sylibrd 261 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → 𝑥𝑦))
1312exp4b 433 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ ℤ → ((𝑥 − 1) < 𝐴 → (𝐴𝑦𝑥𝑦))))
1413com23 86 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → (𝑦 ∈ ℤ → (𝐴𝑦𝑥𝑦))))
1514ralrimdv 3188 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
165ltnrd 10768 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ¬ (𝑥 − 1) < (𝑥 − 1))
17 peano2zm 12019 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℤ)
18 zlem1lt 12028 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑥 − 1) ∈ ℤ) → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
1917, 18mpdan 685 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
2016, 19mtbird 327 . . . . . . . . . 10 (𝑥 ∈ ℤ → ¬ 𝑥 ≤ (𝑥 − 1))
2120ad2antrr 724 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → ¬ 𝑥 ≤ (𝑥 − 1))
22 lenlt 10713 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑥 − 1) ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
235, 22sylan2 594 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2423ancoms 461 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2524adantr 483 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
26 breq2 5063 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝐴𝑦𝐴 ≤ (𝑥 − 1)))
27 breq2 5063 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑥𝑦𝑥 ≤ (𝑥 − 1)))
2826, 27imbi12d 347 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝐴𝑦𝑥𝑦) ↔ (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
2928rspcv 3618 . . . . . . . . . . . . 13 ((𝑥 − 1) ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3017, 29syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3130imp 409 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3231adantlr 713 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3325, 32sylbird 262 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (¬ (𝑥 − 1) < 𝐴𝑥 ≤ (𝑥 − 1)))
3421, 33mt3d 150 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝑥 − 1) < 𝐴)
3534ex 415 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝑥 − 1) < 𝐴))
3615, 35impbid 214 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
37 1re 10635 . . . . . . . 8 1 ∈ ℝ
38 ltsubadd 11104 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
3937, 38mp3an2 1445 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
403, 39sylan 582 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
4136, 40bitr3d 283 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4241ancoms 461 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4342anbi2d 630 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝐴𝑥𝑥 < (𝐴 + 1))))
4443reubidva 3389 . 2 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1))))
451, 44mpbid 234 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  ∃!wreu 3140   class class class wbr 5059  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  cz 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238
This theorem is referenced by:  rebtwnz  12341  qbtwnre  12586  dfceil2  13203
  Copyright terms: Public domain W3C validator