MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zbtwnre Structured version   Visualization version   GIF version

Theorem zbtwnre 12967
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zbtwnre (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem zbtwnre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 zmin 12965 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2 zre 12597 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
3 zre 12597 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
4 peano2rem 11555 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℝ)
6 ltletr 11332 . . . . . . . . . . . . . 14 (((𝑥 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
75, 6syl3an1 1163 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
873expa 1118 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
92, 8sylan2 593 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
10 zlem1lt 12649 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
1110adantlr 715 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
129, 11sylibrd 259 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → 𝑥𝑦))
1312exp4b 430 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ ℤ → ((𝑥 − 1) < 𝐴 → (𝐴𝑦𝑥𝑦))))
1413com23 86 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → (𝑦 ∈ ℤ → (𝐴𝑦𝑥𝑦))))
1514ralrimdv 3139 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
165ltnrd 11374 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ¬ (𝑥 − 1) < (𝑥 − 1))
17 peano2zm 12640 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℤ)
18 zlem1lt 12649 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑥 − 1) ∈ ℤ) → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
1917, 18mpdan 687 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
2016, 19mtbird 325 . . . . . . . . . 10 (𝑥 ∈ ℤ → ¬ 𝑥 ≤ (𝑥 − 1))
2120ad2antrr 726 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → ¬ 𝑥 ≤ (𝑥 − 1))
22 lenlt 11318 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑥 − 1) ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
235, 22sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2423ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2524adantr 480 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
26 breq2 5128 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝐴𝑦𝐴 ≤ (𝑥 − 1)))
27 breq2 5128 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑥𝑦𝑥 ≤ (𝑥 − 1)))
2826, 27imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝐴𝑦𝑥𝑦) ↔ (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
2928rspcv 3602 . . . . . . . . . . . . 13 ((𝑥 − 1) ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3017, 29syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3130imp 406 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3231adantlr 715 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3325, 32sylbird 260 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (¬ (𝑥 − 1) < 𝐴𝑥 ≤ (𝑥 − 1)))
3421, 33mt3d 148 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝑥 − 1) < 𝐴)
3534ex 412 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝑥 − 1) < 𝐴))
3615, 35impbid 212 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
37 1re 11240 . . . . . . . 8 1 ∈ ℝ
38 ltsubadd 11712 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
3937, 38mp3an2 1451 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
403, 39sylan 580 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
4136, 40bitr3d 281 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4241ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4342anbi2d 630 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝐴𝑥𝑥 < (𝐴 + 1))))
4443reubidva 3380 . 2 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1))))
451, 44mpbid 232 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  ∃!wreu 3362   class class class wbr 5124  (class class class)co 7410  cr 11133  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471  cz 12593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858
This theorem is referenced by:  rebtwnz  12968  qbtwnre  13220  dfceil2  13861
  Copyright terms: Public domain W3C validator