MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zbtwnre Structured version   Visualization version   GIF version

Theorem zbtwnre 12986
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zbtwnre (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem zbtwnre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 zmin 12984 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2 zre 12615 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
3 zre 12615 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
4 peano2rem 11574 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℝ)
6 ltletr 11351 . . . . . . . . . . . . . 14 (((𝑥 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
75, 6syl3an1 1162 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
873expa 1117 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
92, 8sylan2 593 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
10 zlem1lt 12667 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
1110adantlr 715 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
129, 11sylibrd 259 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → 𝑥𝑦))
1312exp4b 430 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ ℤ → ((𝑥 − 1) < 𝐴 → (𝐴𝑦𝑥𝑦))))
1413com23 86 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → (𝑦 ∈ ℤ → (𝐴𝑦𝑥𝑦))))
1514ralrimdv 3150 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
165ltnrd 11393 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ¬ (𝑥 − 1) < (𝑥 − 1))
17 peano2zm 12658 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℤ)
18 zlem1lt 12667 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑥 − 1) ∈ ℤ) → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
1917, 18mpdan 687 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
2016, 19mtbird 325 . . . . . . . . . 10 (𝑥 ∈ ℤ → ¬ 𝑥 ≤ (𝑥 − 1))
2120ad2antrr 726 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → ¬ 𝑥 ≤ (𝑥 − 1))
22 lenlt 11337 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑥 − 1) ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
235, 22sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2423ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2524adantr 480 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
26 breq2 5152 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝐴𝑦𝐴 ≤ (𝑥 − 1)))
27 breq2 5152 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑥𝑦𝑥 ≤ (𝑥 − 1)))
2826, 27imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝐴𝑦𝑥𝑦) ↔ (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
2928rspcv 3618 . . . . . . . . . . . . 13 ((𝑥 − 1) ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3017, 29syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3130imp 406 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3231adantlr 715 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3325, 32sylbird 260 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (¬ (𝑥 − 1) < 𝐴𝑥 ≤ (𝑥 − 1)))
3421, 33mt3d 148 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝑥 − 1) < 𝐴)
3534ex 412 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝑥 − 1) < 𝐴))
3615, 35impbid 212 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
37 1re 11259 . . . . . . . 8 1 ∈ ℝ
38 ltsubadd 11731 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
3937, 38mp3an2 1448 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
403, 39sylan 580 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
4136, 40bitr3d 281 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4241ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4342anbi2d 630 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝐴𝑥𝑥 < (𝐴 + 1))))
4443reubidva 3394 . 2 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1))))
451, 44mpbid 232 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  ∃!wreu 3376   class class class wbr 5148  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cz 12611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877
This theorem is referenced by:  rebtwnz  12987  qbtwnre  13238  dfceil2  13876
  Copyright terms: Public domain W3C validator