MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zbtwnre Structured version   Visualization version   GIF version

Theorem zbtwnre 12836
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zbtwnre (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem zbtwnre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 zmin 12834 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2 zre 12464 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
3 zre 12464 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
4 peano2rem 11420 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℝ)
6 ltletr 11197 . . . . . . . . . . . . . 14 (((𝑥 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
75, 6syl3an1 1163 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
873expa 1118 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
92, 8sylan2 593 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
10 zlem1lt 12516 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
1110adantlr 715 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
129, 11sylibrd 259 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → 𝑥𝑦))
1312exp4b 430 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ ℤ → ((𝑥 − 1) < 𝐴 → (𝐴𝑦𝑥𝑦))))
1413com23 86 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → (𝑦 ∈ ℤ → (𝐴𝑦𝑥𝑦))))
1514ralrimdv 3128 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
165ltnrd 11239 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ¬ (𝑥 − 1) < (𝑥 − 1))
17 peano2zm 12507 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℤ)
18 zlem1lt 12516 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑥 − 1) ∈ ℤ) → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
1917, 18mpdan 687 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
2016, 19mtbird 325 . . . . . . . . . 10 (𝑥 ∈ ℤ → ¬ 𝑥 ≤ (𝑥 − 1))
2120ad2antrr 726 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → ¬ 𝑥 ≤ (𝑥 − 1))
22 lenlt 11183 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑥 − 1) ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
235, 22sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2423ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2524adantr 480 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
26 breq2 5093 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝐴𝑦𝐴 ≤ (𝑥 − 1)))
27 breq2 5093 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑥𝑦𝑥 ≤ (𝑥 − 1)))
2826, 27imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝐴𝑦𝑥𝑦) ↔ (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
2928rspcv 3571 . . . . . . . . . . . . 13 ((𝑥 − 1) ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3017, 29syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3130imp 406 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3231adantlr 715 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3325, 32sylbird 260 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (¬ (𝑥 − 1) < 𝐴𝑥 ≤ (𝑥 − 1)))
3421, 33mt3d 148 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝑥 − 1) < 𝐴)
3534ex 412 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝑥 − 1) < 𝐴))
3615, 35impbid 212 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
37 1re 11104 . . . . . . . 8 1 ∈ ℝ
38 ltsubadd 11579 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
3937, 38mp3an2 1451 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
403, 39sylan 580 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
4136, 40bitr3d 281 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4241ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4342anbi2d 630 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝐴𝑥𝑥 < (𝐴 + 1))))
4443reubidva 3358 . 2 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1))))
451, 44mpbid 232 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  ∃!wreu 3342   class class class wbr 5089  (class class class)co 7341  cr 10997  1c1 10999   + caddc 11001   < clt 11138  cle 11139  cmin 11336  cz 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725
This theorem is referenced by:  rebtwnz  12837  qbtwnre  13090  dfceil2  13735
  Copyright terms: Public domain W3C validator