MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zbtwnre Structured version   Visualization version   GIF version

Theorem zbtwnre 13011
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zbtwnre (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem zbtwnre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 zmin 13009 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2 zre 12643 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
3 zre 12643 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
4 peano2rem 11603 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℝ)
6 ltletr 11382 . . . . . . . . . . . . . 14 (((𝑥 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
75, 6syl3an1 1163 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
873expa 1118 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
92, 8sylan2 592 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → (𝑥 − 1) < 𝑦))
10 zlem1lt 12695 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
1110adantlr 714 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (𝑥𝑦 ↔ (𝑥 − 1) < 𝑦))
129, 11sylibrd 259 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ 𝑦 ∈ ℤ) → (((𝑥 − 1) < 𝐴𝐴𝑦) → 𝑥𝑦))
1312exp4b 430 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ ℤ → ((𝑥 − 1) < 𝐴 → (𝐴𝑦𝑥𝑦))))
1413com23 86 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → (𝑦 ∈ ℤ → (𝐴𝑦𝑥𝑦))))
1514ralrimdv 3158 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 → ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
165ltnrd 11424 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ¬ (𝑥 − 1) < (𝑥 − 1))
17 peano2zm 12686 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℤ)
18 zlem1lt 12695 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑥 − 1) ∈ ℤ) → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
1917, 18mpdan 686 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 ≤ (𝑥 − 1) ↔ (𝑥 − 1) < (𝑥 − 1)))
2016, 19mtbird 325 . . . . . . . . . 10 (𝑥 ∈ ℤ → ¬ 𝑥 ≤ (𝑥 − 1))
2120ad2antrr 725 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → ¬ 𝑥 ≤ (𝑥 − 1))
22 lenlt 11368 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑥 − 1) ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
235, 22sylan2 592 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2423ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
2524adantr 480 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) ↔ ¬ (𝑥 − 1) < 𝐴))
26 breq2 5170 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝐴𝑦𝐴 ≤ (𝑥 − 1)))
27 breq2 5170 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑥𝑦𝑥 ≤ (𝑥 − 1)))
2826, 27imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝐴𝑦𝑥𝑦) ↔ (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
2928rspcv 3631 . . . . . . . . . . . . 13 ((𝑥 − 1) ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3017, 29syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1))))
3130imp 406 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3231adantlr 714 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝐴 ≤ (𝑥 − 1) → 𝑥 ≤ (𝑥 − 1)))
3325, 32sylbird 260 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (¬ (𝑥 − 1) < 𝐴𝑥 ≤ (𝑥 − 1)))
3421, 33mt3d 148 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) → (𝑥 − 1) < 𝐴)
3534ex 412 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) → (𝑥 − 1) < 𝐴))
3615, 35impbid 212 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
37 1re 11290 . . . . . . . 8 1 ∈ ℝ
38 ltsubadd 11760 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
3937, 38mp3an2 1449 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
403, 39sylan 579 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝑥 − 1) < 𝐴𝑥 < (𝐴 + 1)))
4136, 40bitr3d 281 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4241ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦) ↔ 𝑥 < (𝐴 + 1)))
4342anbi2d 629 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝐴𝑥𝑥 < (𝐴 + 1))))
4443reubidva 3404 . 2 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1))))
451, 44mpbid 232 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386   class class class wbr 5166  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cz 12639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904
This theorem is referenced by:  rebtwnz  13012  qbtwnre  13261  dfceil2  13890
  Copyright terms: Public domain W3C validator