MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalgb Structured version   Visualization version   GIF version

Theorem divalgb 16113
Description: Express the division algorithm as stated in divalg 16112 in terms of . (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgb ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalgb
StepHypRef Expression
1 df-3an 1088 . . . . . . . . 9 ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
21rexbii 3181 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3 r19.42v 3279 . . . . . . . 8 (∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
42, 3bitri 274 . . . . . . 7 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
5 zsubcl 12362 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝑁𝑟) ∈ ℤ)
6 divides 15965 . . . . . . . . . . . 12 ((𝐷 ∈ ℤ ∧ (𝑁𝑟) ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
75, 6sylan2 593 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ)) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
873impb 1114 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
983com12 1122 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
10 zcn 12324 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
11 zcn 12324 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℤ → 𝑟 ∈ ℂ)
12 zmulcl 12369 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ)
1312zcnd 12427 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℂ)
14 subadd 11224 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
1510, 11, 13, 14syl3an 1159 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
16 addcom 11161 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
1711, 13, 16syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
18173adant1 1129 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
1918eqeq1d 2740 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑟 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
2015, 19bitrd 278 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
21 eqcom 2745 . . . . . . . . . . . . . . . 16 ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁𝑟))
22 eqcom 2745 . . . . . . . . . . . . . . . 16 (((𝑞 · 𝐷) + 𝑟) = 𝑁𝑁 = ((𝑞 · 𝐷) + 𝑟))
2320, 21, 223bitr3g 313 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
24233expia 1120 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2524expcomd 417 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∈ ℤ → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))))
26253impia 1116 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2726imp 407 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2827rexbidva 3225 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
29283com23 1125 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
309, 29bitrd 278 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3130anbi2d 629 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
324, 31bitr4id 290 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟))))
33 anass 469 . . . . . 6 (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
3432, 33bitrdi 287 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
35343expa 1117 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
3635reubidva 3322 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
37 elnn0z 12332 . . . . . . 7 (𝑟 ∈ ℕ0 ↔ (𝑟 ∈ ℤ ∧ 0 ≤ 𝑟))
3837anbi1i 624 . . . . . 6 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
39 anass 469 . . . . . 6 (((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4038, 39bitri 274 . . . . 5 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4140eubii 2585 . . . 4 (∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
42 df-reu 3072 . . . 4 (∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
43 df-reu 3072 . . . 4 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4441, 42, 433bitr4ri 304 . . 3 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))
4536, 44bitrdi 287 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
46453adant3 1131 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  ∃!weu 2568  wne 2943  wrex 3065  ∃!wreu 3066   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  0cn0 12233  cz 12319  abscabs 14945  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-dvds 15964
This theorem is referenced by:  divalg2  16114
  Copyright terms: Public domain W3C validator