Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1arith2 | Structured version Visualization version GIF version |
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
1arith.1 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
1arith.2 | ⊢ 𝑅 = {𝑒 ∈ (ℕ0 ↑m ℙ) ∣ (◡𝑒 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
1arith2 | ⊢ ∀𝑧 ∈ ℕ ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arith.1 | . . . . . 6 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) | |
2 | 1arith.2 | . . . . . 6 ⊢ 𝑅 = {𝑒 ∈ (ℕ0 ↑m ℙ) ∣ (◡𝑒 “ ℕ) ∈ Fin} | |
3 | 1, 2 | 1arith 16628 | . . . . 5 ⊢ 𝑀:ℕ–1-1-onto→𝑅 |
4 | f1ocnv 6728 | . . . . 5 ⊢ (𝑀:ℕ–1-1-onto→𝑅 → ◡𝑀:𝑅–1-1-onto→ℕ) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ◡𝑀:𝑅–1-1-onto→ℕ |
6 | f1ofveu 7270 | . . . 4 ⊢ ((◡𝑀:𝑅–1-1-onto→ℕ ∧ 𝑧 ∈ ℕ) → ∃!𝑔 ∈ 𝑅 (◡𝑀‘𝑔) = 𝑧) | |
7 | 5, 6 | mpan 687 | . . 3 ⊢ (𝑧 ∈ ℕ → ∃!𝑔 ∈ 𝑅 (◡𝑀‘𝑔) = 𝑧) |
8 | f1ocnvfvb 7151 | . . . . 5 ⊢ ((𝑀:ℕ–1-1-onto→𝑅 ∧ 𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅) → ((𝑀‘𝑧) = 𝑔 ↔ (◡𝑀‘𝑔) = 𝑧)) | |
9 | 3, 8 | mp3an1 1447 | . . . 4 ⊢ ((𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅) → ((𝑀‘𝑧) = 𝑔 ↔ (◡𝑀‘𝑔) = 𝑧)) |
10 | 9 | reubidva 3322 | . . 3 ⊢ (𝑧 ∈ ℕ → (∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 ↔ ∃!𝑔 ∈ 𝑅 (◡𝑀‘𝑔) = 𝑧)) |
11 | 7, 10 | mpbird 256 | . 2 ⊢ (𝑧 ∈ ℕ → ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔) |
12 | 11 | rgen 3074 | 1 ⊢ ∀𝑧 ∈ ℕ ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃!wreu 3066 {crab 3068 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Fincfn 8733 ℕcn 11973 ℕ0cn0 12233 ℙcprime 16376 pCnt cpc 16537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-fz 13240 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-prm 16377 df-pc 16538 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |