MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith2 Structured version   Visualization version   GIF version

Theorem 1arith2 16968
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith2 𝑧 ∈ ℕ ∃!𝑔𝑅 (𝑀𝑧) = 𝑔
Distinct variable groups:   𝑒,𝑔,𝑛,𝑝,𝑧   𝑒,𝑀,𝑔   𝑅,𝑔,𝑛
Allowed substitution hints:   𝑅(𝑧,𝑒,𝑝)   𝑀(𝑧,𝑛,𝑝)

Proof of Theorem 1arith2
StepHypRef Expression
1 1arith.1 . . . . . 6 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
2 1arith.2 . . . . . 6 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
31, 21arith 16967 . . . . 5 𝑀:ℕ–1-1-onto𝑅
4 f1ocnv 6865 . . . . 5 (𝑀:ℕ–1-1-onto𝑅𝑀:𝑅1-1-onto→ℕ)
53, 4ax-mp 5 . . . 4 𝑀:𝑅1-1-onto→ℕ
6 f1ofveu 7429 . . . 4 ((𝑀:𝑅1-1-onto→ℕ ∧ 𝑧 ∈ ℕ) → ∃!𝑔𝑅 (𝑀𝑔) = 𝑧)
75, 6mpan 690 . . 3 (𝑧 ∈ ℕ → ∃!𝑔𝑅 (𝑀𝑔) = 𝑧)
8 f1ocnvfvb 7303 . . . . 5 ((𝑀:ℕ–1-1-onto𝑅𝑧 ∈ ℕ ∧ 𝑔𝑅) → ((𝑀𝑧) = 𝑔 ↔ (𝑀𝑔) = 𝑧))
93, 8mp3an1 1448 . . . 4 ((𝑧 ∈ ℕ ∧ 𝑔𝑅) → ((𝑀𝑧) = 𝑔 ↔ (𝑀𝑔) = 𝑧))
109reubidva 3395 . . 3 (𝑧 ∈ ℕ → (∃!𝑔𝑅 (𝑀𝑧) = 𝑔 ↔ ∃!𝑔𝑅 (𝑀𝑔) = 𝑧))
117, 10mpbird 257 . 2 (𝑧 ∈ ℕ → ∃!𝑔𝑅 (𝑀𝑧) = 𝑔)
1211rgen 3062 1 𝑧 ∈ ℕ ∃!𝑔𝑅 (𝑀𝑧) = 𝑔
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1538  wcel 2107  wral 3060  ∃!wreu 3377  {crab 3434  cmpt 5232  ccnv 5689  cima 5693  1-1-ontowf1o 6565  cfv 6566  (class class class)co 7435  m cmap 8871  Fincfn 8990  cn 12270  0cn0 12530  cprime 16711   pCnt cpc 16876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-er 8750  df-map 8873  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-sup 9486  df-inf 9487  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-n0 12531  df-z 12618  df-uz 12883  df-q 12995  df-rp 13039  df-fz 13551  df-fl 13835  df-mod 13913  df-seq 14046  df-exp 14106  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278  df-dvds 16294  df-gcd 16535  df-prm 16712  df-pc 16877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator