![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1arith2 | Structured version Visualization version GIF version |
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
1arith.1 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
1arith.2 | ⊢ 𝑅 = {𝑒 ∈ (ℕ0 ↑m ℙ) ∣ (◡𝑒 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
1arith2 | ⊢ ∀𝑧 ∈ ℕ ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arith.1 | . . . . . 6 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) | |
2 | 1arith.2 | . . . . . 6 ⊢ 𝑅 = {𝑒 ∈ (ℕ0 ↑m ℙ) ∣ (◡𝑒 “ ℕ) ∈ Fin} | |
3 | 1, 2 | 1arith 16857 | . . . . 5 ⊢ 𝑀:ℕ–1-1-onto→𝑅 |
4 | f1ocnv 6843 | . . . . 5 ⊢ (𝑀:ℕ–1-1-onto→𝑅 → ◡𝑀:𝑅–1-1-onto→ℕ) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ◡𝑀:𝑅–1-1-onto→ℕ |
6 | f1ofveu 7400 | . . . 4 ⊢ ((◡𝑀:𝑅–1-1-onto→ℕ ∧ 𝑧 ∈ ℕ) → ∃!𝑔 ∈ 𝑅 (◡𝑀‘𝑔) = 𝑧) | |
7 | 5, 6 | mpan 689 | . . 3 ⊢ (𝑧 ∈ ℕ → ∃!𝑔 ∈ 𝑅 (◡𝑀‘𝑔) = 𝑧) |
8 | f1ocnvfvb 7274 | . . . . 5 ⊢ ((𝑀:ℕ–1-1-onto→𝑅 ∧ 𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅) → ((𝑀‘𝑧) = 𝑔 ↔ (◡𝑀‘𝑔) = 𝑧)) | |
9 | 3, 8 | mp3an1 1449 | . . . 4 ⊢ ((𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅) → ((𝑀‘𝑧) = 𝑔 ↔ (◡𝑀‘𝑔) = 𝑧)) |
10 | 9 | reubidva 3393 | . . 3 ⊢ (𝑧 ∈ ℕ → (∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 ↔ ∃!𝑔 ∈ 𝑅 (◡𝑀‘𝑔) = 𝑧)) |
11 | 7, 10 | mpbird 257 | . 2 ⊢ (𝑧 ∈ ℕ → ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔) |
12 | 11 | rgen 3064 | 1 ⊢ ∀𝑧 ∈ ℕ ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃!wreu 3375 {crab 3433 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7406 ↑m cmap 8817 Fincfn 8936 ℕcn 12209 ℕ0cn0 12469 ℙcprime 16605 pCnt cpc 16766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-2o 8464 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-fz 13482 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-dvds 16195 df-gcd 16433 df-prm 16606 df-pc 16767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |