MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith2 Structured version   Visualization version   GIF version

Theorem 1arith2 16905
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith2 𝑧 ∈ ℕ ∃!𝑔𝑅 (𝑀𝑧) = 𝑔
Distinct variable groups:   𝑒,𝑔,𝑛,𝑝,𝑧   𝑒,𝑀,𝑔   𝑅,𝑔,𝑛
Allowed substitution hints:   𝑅(𝑧,𝑒,𝑝)   𝑀(𝑧,𝑛,𝑝)

Proof of Theorem 1arith2
StepHypRef Expression
1 1arith.1 . . . . . 6 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
2 1arith.2 . . . . . 6 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
31, 21arith 16904 . . . . 5 𝑀:ℕ–1-1-onto𝑅
4 f1ocnv 6819 . . . . 5 (𝑀:ℕ–1-1-onto𝑅𝑀:𝑅1-1-onto→ℕ)
53, 4ax-mp 5 . . . 4 𝑀:𝑅1-1-onto→ℕ
6 f1ofveu 7388 . . . 4 ((𝑀:𝑅1-1-onto→ℕ ∧ 𝑧 ∈ ℕ) → ∃!𝑔𝑅 (𝑀𝑔) = 𝑧)
75, 6mpan 690 . . 3 (𝑧 ∈ ℕ → ∃!𝑔𝑅 (𝑀𝑔) = 𝑧)
8 f1ocnvfvb 7261 . . . . 5 ((𝑀:ℕ–1-1-onto𝑅𝑧 ∈ ℕ ∧ 𝑔𝑅) → ((𝑀𝑧) = 𝑔 ↔ (𝑀𝑔) = 𝑧))
93, 8mp3an1 1450 . . . 4 ((𝑧 ∈ ℕ ∧ 𝑔𝑅) → ((𝑀𝑧) = 𝑔 ↔ (𝑀𝑔) = 𝑧))
109reubidva 3373 . . 3 (𝑧 ∈ ℕ → (∃!𝑔𝑅 (𝑀𝑧) = 𝑔 ↔ ∃!𝑔𝑅 (𝑀𝑔) = 𝑧))
117, 10mpbird 257 . 2 (𝑧 ∈ ℕ → ∃!𝑔𝑅 (𝑀𝑧) = 𝑔)
1211rgen 3048 1 𝑧 ∈ ℕ ∃!𝑔𝑅 (𝑀𝑧) = 𝑔
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wral 3046  ∃!wreu 3355  {crab 3411  cmpt 5196  ccnv 5645  cima 5649  1-1-ontowf1o 6518  cfv 6519  (class class class)co 7394  m cmap 8803  Fincfn 8922  cn 12197  0cn0 12458  cprime 16647   pCnt cpc 16813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9411  df-inf 9412  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-n0 12459  df-z 12546  df-uz 12810  df-q 12922  df-rp 12966  df-fz 13482  df-fl 13766  df-mod 13844  df-seq 13977  df-exp 14037  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-dvds 16230  df-gcd 16471  df-prm 16648  df-pc 16814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator