![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1arith2 | Structured version Visualization version GIF version |
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
1arith.1 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
1arith.2 | ⊢ 𝑅 = {𝑒 ∈ (ℕ0 ↑m ℙ) ∣ (◡𝑒 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
1arith2 | ⊢ ∀𝑧 ∈ ℕ ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arith.1 | . . . . . 6 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) | |
2 | 1arith.2 | . . . . . 6 ⊢ 𝑅 = {𝑒 ∈ (ℕ0 ↑m ℙ) ∣ (◡𝑒 “ ℕ) ∈ Fin} | |
3 | 1, 2 | 1arith 16976 | . . . . 5 ⊢ 𝑀:ℕ–1-1-onto→𝑅 |
4 | f1ocnv 6876 | . . . . 5 ⊢ (𝑀:ℕ–1-1-onto→𝑅 → ◡𝑀:𝑅–1-1-onto→ℕ) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ◡𝑀:𝑅–1-1-onto→ℕ |
6 | f1ofveu 7444 | . . . 4 ⊢ ((◡𝑀:𝑅–1-1-onto→ℕ ∧ 𝑧 ∈ ℕ) → ∃!𝑔 ∈ 𝑅 (◡𝑀‘𝑔) = 𝑧) | |
7 | 5, 6 | mpan 689 | . . 3 ⊢ (𝑧 ∈ ℕ → ∃!𝑔 ∈ 𝑅 (◡𝑀‘𝑔) = 𝑧) |
8 | f1ocnvfvb 7317 | . . . . 5 ⊢ ((𝑀:ℕ–1-1-onto→𝑅 ∧ 𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅) → ((𝑀‘𝑧) = 𝑔 ↔ (◡𝑀‘𝑔) = 𝑧)) | |
9 | 3, 8 | mp3an1 1448 | . . . 4 ⊢ ((𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅) → ((𝑀‘𝑧) = 𝑔 ↔ (◡𝑀‘𝑔) = 𝑧)) |
10 | 9 | reubidva 3404 | . . 3 ⊢ (𝑧 ∈ ℕ → (∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 ↔ ∃!𝑔 ∈ 𝑅 (◡𝑀‘𝑔) = 𝑧)) |
11 | 7, 10 | mpbird 257 | . 2 ⊢ (𝑧 ∈ ℕ → ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔) |
12 | 11 | rgen 3069 | 1 ⊢ ∀𝑧 ∈ ℕ ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃!wreu 3386 {crab 3443 ↦ cmpt 5249 ◡ccnv 5699 “ cima 5703 –1-1-onto→wf1o 6574 ‘cfv 6575 (class class class)co 7450 ↑m cmap 8886 Fincfn 9005 ℕcn 12295 ℕ0cn0 12555 ℙcprime 16720 pCnt cpc 16885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-sup 9513 df-inf 9514 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-n0 12556 df-z 12642 df-uz 12906 df-q 13016 df-rp 13060 df-fz 13570 df-fl 13845 df-mod 13923 df-seq 14055 df-exp 14115 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-dvds 16305 df-gcd 16543 df-prm 16721 df-pc 16886 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |