MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg2 Structured version   Visualization version   GIF version

Theorem ply1divalg2 26193
Description: Reverse the order of multiplication in ply1divalg 26192 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = (deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divalg.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
ply1divalg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ply1divalg2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   0 ,𝑞
Allowed substitution hint:   𝑈(𝑞)

Proof of Theorem ply1divalg2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Poly1‘(oppr𝑅)) = (Poly1‘(oppr𝑅))
2 ply1divalg.d . . . 4 𝐷 = (deg1𝑅)
3 eqidd 2736 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘𝑅))
4 eqid 2735 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
5 eqid 2735 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
64, 5opprbas 20358 . . . . . . 7 (Base‘𝑅) = (Base‘(oppr𝑅))
76a1i 11 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘(oppr𝑅)))
8 eqid 2735 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
94, 8oppradd 20360 . . . . . . . 8 (+g𝑅) = (+g‘(oppr𝑅))
109oveqi 7444 . . . . . . 7 (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟)
1110a1i 11 . . . . . 6 ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟))
123, 7, 11deg1propd 26140 . . . . 5 (⊤ → (deg1𝑅) = (deg1‘(oppr𝑅)))
1312mptru 1544 . . . 4 (deg1𝑅) = (deg1‘(oppr𝑅))
142, 13eqtri 2763 . . 3 𝐷 = (deg1‘(oppr𝑅))
15 ply1divalg.b . . . 4 𝐵 = (Base‘𝑃)
16 ply1divalg.p . . . . . 6 𝑃 = (Poly1𝑅)
1716fveq2i 6910 . . . . 5 (Base‘𝑃) = (Base‘(Poly1𝑅))
183, 7, 11ply1baspropd 22260 . . . . . 6 (⊤ → (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅))))
1918mptru 1544 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅)))
2017, 19eqtri 2763 . . . 4 (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅)))
2115, 20eqtri 2763 . . 3 𝐵 = (Base‘(Poly1‘(oppr𝑅)))
22 ply1divalg.m . . . 4 = (-g𝑃)
2320a1i 11 . . . . . 6 (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅))))
2416fveq2i 6910 . . . . . . . 8 (+g𝑃) = (+g‘(Poly1𝑅))
253, 7, 11ply1plusgpropd 22261 . . . . . . . . 9 (⊤ → (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅))))
2625mptru 1544 . . . . . . . 8 (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅)))
2724, 26eqtri 2763 . . . . . . 7 (+g𝑃) = (+g‘(Poly1‘(oppr𝑅)))
2827a1i 11 . . . . . 6 (⊤ → (+g𝑃) = (+g‘(Poly1‘(oppr𝑅))))
2923, 28grpsubpropd 19076 . . . . 5 (⊤ → (-g𝑃) = (-g‘(Poly1‘(oppr𝑅))))
3029mptru 1544 . . . 4 (-g𝑃) = (-g‘(Poly1‘(oppr𝑅)))
3122, 30eqtri 2763 . . 3 = (-g‘(Poly1‘(oppr𝑅)))
32 ply1divalg.z . . . 4 0 = (0g𝑃)
3315a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘𝑃))
3421a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘(Poly1‘(oppr𝑅))))
3527oveqi 7444 . . . . . . 7 (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟)
3635a1i 11 . . . . . 6 ((⊤ ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟))
3733, 34, 36grpidpropd 18688 . . . . 5 (⊤ → (0g𝑃) = (0g‘(Poly1‘(oppr𝑅))))
3837mptru 1544 . . . 4 (0g𝑃) = (0g‘(Poly1‘(oppr𝑅)))
3932, 38eqtri 2763 . . 3 0 = (0g‘(Poly1‘(oppr𝑅)))
40 eqid 2735 . . 3 (.r‘(Poly1‘(oppr𝑅))) = (.r‘(Poly1‘(oppr𝑅)))
41 ply1divalg.r1 . . . 4 (𝜑𝑅 ∈ Ring)
424opprring 20364 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
4341, 42syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
44 ply1divalg.f . . 3 (𝜑𝐹𝐵)
45 ply1divalg.g1 . . 3 (𝜑𝐺𝐵)
46 ply1divalg.g2 . . 3 (𝜑𝐺0 )
47 ply1divalg.g3 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
48 ply1divalg.u . . . 4 𝑈 = (Unit‘𝑅)
4948, 4opprunit 20394 . . 3 𝑈 = (Unit‘(oppr𝑅))
501, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49ply1divalg 26192 . 2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺))
5141adantr 480 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑅 ∈ Ring)
5245adantr 480 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝐺𝐵)
53 simpr 484 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑞𝐵)
54 ply1divalg.t . . . . . . . . 9 = (.r𝑃)
5516, 4, 1, 54, 40, 15ply1opprmul 22256 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5651, 52, 53, 55syl3anc 1370 . . . . . . 7 ((𝜑𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5756eqcomd 2741 . . . . . 6 ((𝜑𝑞𝐵) → (𝑞 𝐺) = (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))
5857oveq2d 7447 . . . . 5 ((𝜑𝑞𝐵) → (𝐹 (𝑞 𝐺)) = (𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞)))
5958fveq2d 6911 . . . 4 ((𝜑𝑞𝐵) → (𝐷‘(𝐹 (𝑞 𝐺))) = (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))))
6059breq1d 5158 . . 3 ((𝜑𝑞𝐵) → ((𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6160reubidva 3394 . 2 (𝜑 → (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6250, 61mpbird 257 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wtru 1538  wcel 2106  wne 2938  ∃!wreu 3376   class class class wbr 5148  cfv 6563  (class class class)co 7431   < clt 11293  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  -gcsg 18966  Ringcrg 20251  opprcoppr 20350  Unitcui 20372  Poly1cpl1 22194  coe1cco1 22195  deg1cdg1 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-lmod 20877  df-lss 20948  df-cnfld 21383  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-mdeg 26109  df-deg1 26110
This theorem is referenced by:  q1peqb  26210  ply1divalg3  35627
  Copyright terms: Public domain W3C validator