| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1divalg2 | Structured version Visualization version GIF version | ||
| Description: Reverse the order of multiplication in ply1divalg 26070 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1divalg.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1divalg.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1divalg.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1divalg.m | ⊢ − = (-g‘𝑃) |
| ply1divalg.z | ⊢ 0 = (0g‘𝑃) |
| ply1divalg.t | ⊢ ∙ = (.r‘𝑃) |
| ply1divalg.r1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ply1divalg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| ply1divalg.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| ply1divalg.g2 | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
| ply1divalg.g3 | ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) |
| ply1divalg.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| ply1divalg2 | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Poly1‘(oppr‘𝑅)) = (Poly1‘(oppr‘𝑅)) | |
| 2 | ply1divalg.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 3 | eqidd 2732 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘𝑅)) | |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 5 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 4, 5 | opprbas 20261 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘(oppr‘𝑅))) |
| 8 | eqid 2731 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | 4, 8 | oppradd 20262 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑅)) |
| 10 | 9 | oveqi 7359 | . . . . . . 7 ⊢ (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟) |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟)) |
| 12 | 3, 7, 11 | deg1propd 26018 | . . . . 5 ⊢ (⊤ → (deg1‘𝑅) = (deg1‘(oppr‘𝑅))) |
| 13 | 12 | mptru 1548 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘(oppr‘𝑅)) |
| 14 | 2, 13 | eqtri 2754 | . . 3 ⊢ 𝐷 = (deg1‘(oppr‘𝑅)) |
| 15 | ply1divalg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 16 | ply1divalg.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 17 | 16 | fveq2i 6825 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘(Poly1‘𝑅)) |
| 18 | 3, 7, 11 | ply1baspropd 22155 | . . . . . 6 ⊢ (⊤ → (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅)))) |
| 19 | 18 | mptru 1548 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅))) |
| 20 | 17, 19 | eqtri 2754 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅))) |
| 21 | 15, 20 | eqtri 2754 | . . 3 ⊢ 𝐵 = (Base‘(Poly1‘(oppr‘𝑅))) |
| 22 | ply1divalg.m | . . . 4 ⊢ − = (-g‘𝑃) | |
| 23 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅)))) |
| 24 | 16 | fveq2i 6825 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘(Poly1‘𝑅)) |
| 25 | 3, 7, 11 | ply1plusgpropd 22156 | . . . . . . . . 9 ⊢ (⊤ → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅)))) |
| 26 | 25 | mptru 1548 | . . . . . . . 8 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅))) |
| 27 | 24, 26 | eqtri 2754 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅))) |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅)))) |
| 29 | 23, 28 | grpsubpropd 18958 | . . . . 5 ⊢ (⊤ → (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅)))) |
| 30 | 29 | mptru 1548 | . . . 4 ⊢ (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅))) |
| 31 | 22, 30 | eqtri 2754 | . . 3 ⊢ − = (-g‘(Poly1‘(oppr‘𝑅))) |
| 32 | ply1divalg.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 33 | 15 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘𝑃)) |
| 34 | 21 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘(Poly1‘(oppr‘𝑅)))) |
| 35 | 27 | oveqi 7359 | . . . . . . 7 ⊢ (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟) |
| 36 | 35 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟)) |
| 37 | 33, 34, 36 | grpidpropd 18570 | . . . . 5 ⊢ (⊤ → (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅)))) |
| 38 | 37 | mptru 1548 | . . . 4 ⊢ (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅))) |
| 39 | 32, 38 | eqtri 2754 | . . 3 ⊢ 0 = (0g‘(Poly1‘(oppr‘𝑅))) |
| 40 | eqid 2731 | . . 3 ⊢ (.r‘(Poly1‘(oppr‘𝑅))) = (.r‘(Poly1‘(oppr‘𝑅))) | |
| 41 | ply1divalg.r1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 42 | 4 | opprring 20265 | . . . 4 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
| 43 | 41, 42 | syl 17 | . . 3 ⊢ (𝜑 → (oppr‘𝑅) ∈ Ring) |
| 44 | ply1divalg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 45 | ply1divalg.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 46 | ply1divalg.g2 | . . 3 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
| 47 | ply1divalg.g3 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) | |
| 48 | ply1divalg.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 49 | 48, 4 | opprunit 20295 | . . 3 ⊢ 𝑈 = (Unit‘(oppr‘𝑅)) |
| 50 | 1, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49 | ply1divalg 26070 | . 2 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺)) |
| 51 | 41 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 52 | 45 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
| 53 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑞 ∈ 𝐵) | |
| 54 | ply1divalg.t | . . . . . . . . 9 ⊢ ∙ = (.r‘𝑃) | |
| 55 | 16, 4, 1, 54, 40, 15 | ply1opprmul 22151 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
| 56 | 51, 52, 53, 55 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
| 57 | 56 | eqcomd 2737 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝑞 ∙ 𝐺) = (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)) |
| 58 | 57 | oveq2d 7362 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹 − (𝑞 ∙ 𝐺)) = (𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) |
| 59 | 58 | fveq2d 6826 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) = (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)))) |
| 60 | 59 | breq1d 5099 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
| 61 | 60 | reubidva 3360 | . 2 ⊢ (𝜑 → (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
| 62 | 50, 61 | mpbird 257 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ≠ wne 2928 ∃!wreu 3344 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 < clt 11146 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 -gcsg 18848 Ringcrg 20151 opprcoppr 20254 Unitcui 20273 Poly1cpl1 22089 coe1cco1 22090 deg1cdg1 25986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-lmod 20795 df-lss 20865 df-cnfld 21292 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 df-mdeg 25987 df-deg1 25988 |
| This theorem is referenced by: q1peqb 26088 ply1divalg3 35686 |
| Copyright terms: Public domain | W3C validator |