MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg2 Structured version   Visualization version   GIF version

Theorem ply1divalg2 25208
Description: Reverse the order of multiplication in ply1divalg 25207 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divalg.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
ply1divalg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ply1divalg2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   0 ,𝑞
Allowed substitution hint:   𝑈(𝑞)

Proof of Theorem ply1divalg2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Poly1‘(oppr𝑅)) = (Poly1‘(oppr𝑅))
2 ply1divalg.d . . . 4 𝐷 = ( deg1𝑅)
3 eqidd 2739 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘𝑅))
4 eqid 2738 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
5 eqid 2738 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
64, 5opprbas 19784 . . . . . . 7 (Base‘𝑅) = (Base‘(oppr𝑅))
76a1i 11 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘(oppr𝑅)))
8 eqid 2738 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
94, 8oppradd 19786 . . . . . . . 8 (+g𝑅) = (+g‘(oppr𝑅))
109oveqi 7268 . . . . . . 7 (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟)
1110a1i 11 . . . . . 6 ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟))
123, 7, 11deg1propd 25156 . . . . 5 (⊤ → ( deg1𝑅) = ( deg1 ‘(oppr𝑅)))
1312mptru 1546 . . . 4 ( deg1𝑅) = ( deg1 ‘(oppr𝑅))
142, 13eqtri 2766 . . 3 𝐷 = ( deg1 ‘(oppr𝑅))
15 ply1divalg.b . . . 4 𝐵 = (Base‘𝑃)
16 ply1divalg.p . . . . . 6 𝑃 = (Poly1𝑅)
1716fveq2i 6759 . . . . 5 (Base‘𝑃) = (Base‘(Poly1𝑅))
183, 7, 11ply1baspropd 21324 . . . . . 6 (⊤ → (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅))))
1918mptru 1546 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅)))
2017, 19eqtri 2766 . . . 4 (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅)))
2115, 20eqtri 2766 . . 3 𝐵 = (Base‘(Poly1‘(oppr𝑅)))
22 ply1divalg.m . . . 4 = (-g𝑃)
2320a1i 11 . . . . . 6 (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅))))
2416fveq2i 6759 . . . . . . . 8 (+g𝑃) = (+g‘(Poly1𝑅))
253, 7, 11ply1plusgpropd 21325 . . . . . . . . 9 (⊤ → (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅))))
2625mptru 1546 . . . . . . . 8 (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅)))
2724, 26eqtri 2766 . . . . . . 7 (+g𝑃) = (+g‘(Poly1‘(oppr𝑅)))
2827a1i 11 . . . . . 6 (⊤ → (+g𝑃) = (+g‘(Poly1‘(oppr𝑅))))
2923, 28grpsubpropd 18595 . . . . 5 (⊤ → (-g𝑃) = (-g‘(Poly1‘(oppr𝑅))))
3029mptru 1546 . . . 4 (-g𝑃) = (-g‘(Poly1‘(oppr𝑅)))
3122, 30eqtri 2766 . . 3 = (-g‘(Poly1‘(oppr𝑅)))
32 ply1divalg.z . . . 4 0 = (0g𝑃)
3315a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘𝑃))
3421a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘(Poly1‘(oppr𝑅))))
3527oveqi 7268 . . . . . . 7 (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟)
3635a1i 11 . . . . . 6 ((⊤ ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟))
3733, 34, 36grpidpropd 18261 . . . . 5 (⊤ → (0g𝑃) = (0g‘(Poly1‘(oppr𝑅))))
3837mptru 1546 . . . 4 (0g𝑃) = (0g‘(Poly1‘(oppr𝑅)))
3932, 38eqtri 2766 . . 3 0 = (0g‘(Poly1‘(oppr𝑅)))
40 eqid 2738 . . 3 (.r‘(Poly1‘(oppr𝑅))) = (.r‘(Poly1‘(oppr𝑅)))
41 ply1divalg.r1 . . . 4 (𝜑𝑅 ∈ Ring)
424opprring 19788 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
4341, 42syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
44 ply1divalg.f . . 3 (𝜑𝐹𝐵)
45 ply1divalg.g1 . . 3 (𝜑𝐺𝐵)
46 ply1divalg.g2 . . 3 (𝜑𝐺0 )
47 ply1divalg.g3 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
48 ply1divalg.u . . . 4 𝑈 = (Unit‘𝑅)
4948, 4opprunit 19818 . . 3 𝑈 = (Unit‘(oppr𝑅))
501, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49ply1divalg 25207 . 2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺))
5141adantr 480 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑅 ∈ Ring)
5245adantr 480 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝐺𝐵)
53 simpr 484 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑞𝐵)
54 ply1divalg.t . . . . . . . . 9 = (.r𝑃)
5516, 4, 1, 54, 40, 15ply1opprmul 21320 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5651, 52, 53, 55syl3anc 1369 . . . . . . 7 ((𝜑𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5756eqcomd 2744 . . . . . 6 ((𝜑𝑞𝐵) → (𝑞 𝐺) = (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))
5857oveq2d 7271 . . . . 5 ((𝜑𝑞𝐵) → (𝐹 (𝑞 𝐺)) = (𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞)))
5958fveq2d 6760 . . . 4 ((𝜑𝑞𝐵) → (𝐷‘(𝐹 (𝑞 𝐺))) = (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))))
6059breq1d 5080 . . 3 ((𝜑𝑞𝐵) → ((𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6160reubidva 3314 . 2 (𝜑 → (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6250, 61mpbird 256 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wtru 1540  wcel 2108  wne 2942  ∃!wreu 3065   class class class wbr 5070  cfv 6418  (class class class)co 7255   < clt 10940  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  -gcsg 18494  Ringcrg 19698  opprcoppr 19776  Unitcui 19796  Poly1cpl1 21258  coe1cco1 21259   deg1 cdg1 25121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-subrg 19937  df-lmod 20040  df-lss 20109  df-rlreg 20467  df-cnfld 20511  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-mdeg 25122  df-deg1 25123
This theorem is referenced by:  q1peqb  25224
  Copyright terms: Public domain W3C validator