MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg2 Structured version   Visualization version   GIF version

Theorem ply1divalg2 24735
Description: Reverse the order of multiplication in ply1divalg 24734 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divalg.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
ply1divalg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ply1divalg2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   0 ,𝑞
Allowed substitution hint:   𝑈(𝑞)

Proof of Theorem ply1divalg2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . 3 (Poly1‘(oppr𝑅)) = (Poly1‘(oppr𝑅))
2 ply1divalg.d . . . 4 𝐷 = ( deg1𝑅)
3 eqidd 2825 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘𝑅))
4 eqid 2824 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
5 eqid 2824 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
64, 5opprbas 19382 . . . . . . 7 (Base‘𝑅) = (Base‘(oppr𝑅))
76a1i 11 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘(oppr𝑅)))
8 eqid 2824 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
94, 8oppradd 19383 . . . . . . . 8 (+g𝑅) = (+g‘(oppr𝑅))
109oveqi 7172 . . . . . . 7 (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟)
1110a1i 11 . . . . . 6 ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟))
123, 7, 11deg1propd 24683 . . . . 5 (⊤ → ( deg1𝑅) = ( deg1 ‘(oppr𝑅)))
1312mptru 1543 . . . 4 ( deg1𝑅) = ( deg1 ‘(oppr𝑅))
142, 13eqtri 2847 . . 3 𝐷 = ( deg1 ‘(oppr𝑅))
15 ply1divalg.b . . . 4 𝐵 = (Base‘𝑃)
16 ply1divalg.p . . . . . 6 𝑃 = (Poly1𝑅)
1716fveq2i 6676 . . . . 5 (Base‘𝑃) = (Base‘(Poly1𝑅))
183, 7, 11ply1baspropd 20414 . . . . . 6 (⊤ → (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅))))
1918mptru 1543 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅)))
2017, 19eqtri 2847 . . . 4 (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅)))
2115, 20eqtri 2847 . . 3 𝐵 = (Base‘(Poly1‘(oppr𝑅)))
22 ply1divalg.m . . . 4 = (-g𝑃)
2320a1i 11 . . . . . 6 (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅))))
2416fveq2i 6676 . . . . . . . 8 (+g𝑃) = (+g‘(Poly1𝑅))
253, 7, 11ply1plusgpropd 20415 . . . . . . . . 9 (⊤ → (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅))))
2625mptru 1543 . . . . . . . 8 (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅)))
2724, 26eqtri 2847 . . . . . . 7 (+g𝑃) = (+g‘(Poly1‘(oppr𝑅)))
2827a1i 11 . . . . . 6 (⊤ → (+g𝑃) = (+g‘(Poly1‘(oppr𝑅))))
2923, 28grpsubpropd 18207 . . . . 5 (⊤ → (-g𝑃) = (-g‘(Poly1‘(oppr𝑅))))
3029mptru 1543 . . . 4 (-g𝑃) = (-g‘(Poly1‘(oppr𝑅)))
3122, 30eqtri 2847 . . 3 = (-g‘(Poly1‘(oppr𝑅)))
32 ply1divalg.z . . . 4 0 = (0g𝑃)
3315a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘𝑃))
3421a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘(Poly1‘(oppr𝑅))))
3527oveqi 7172 . . . . . . 7 (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟)
3635a1i 11 . . . . . 6 ((⊤ ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟))
3733, 34, 36grpidpropd 17875 . . . . 5 (⊤ → (0g𝑃) = (0g‘(Poly1‘(oppr𝑅))))
3837mptru 1543 . . . 4 (0g𝑃) = (0g‘(Poly1‘(oppr𝑅)))
3932, 38eqtri 2847 . . 3 0 = (0g‘(Poly1‘(oppr𝑅)))
40 eqid 2824 . . 3 (.r‘(Poly1‘(oppr𝑅))) = (.r‘(Poly1‘(oppr𝑅)))
41 ply1divalg.r1 . . . 4 (𝜑𝑅 ∈ Ring)
424opprring 19384 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
4341, 42syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
44 ply1divalg.f . . 3 (𝜑𝐹𝐵)
45 ply1divalg.g1 . . 3 (𝜑𝐺𝐵)
46 ply1divalg.g2 . . 3 (𝜑𝐺0 )
47 ply1divalg.g3 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
48 ply1divalg.u . . . 4 𝑈 = (Unit‘𝑅)
4948, 4opprunit 19414 . . 3 𝑈 = (Unit‘(oppr𝑅))
501, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49ply1divalg 24734 . 2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺))
5141adantr 483 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑅 ∈ Ring)
5245adantr 483 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝐺𝐵)
53 simpr 487 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑞𝐵)
54 ply1divalg.t . . . . . . . . 9 = (.r𝑃)
5516, 4, 1, 54, 40, 15ply1opprmul 20410 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5651, 52, 53, 55syl3anc 1367 . . . . . . 7 ((𝜑𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5756eqcomd 2830 . . . . . 6 ((𝜑𝑞𝐵) → (𝑞 𝐺) = (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))
5857oveq2d 7175 . . . . 5 ((𝜑𝑞𝐵) → (𝐹 (𝑞 𝐺)) = (𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞)))
5958fveq2d 6677 . . . 4 ((𝜑𝑞𝐵) → (𝐷‘(𝐹 (𝑞 𝐺))) = (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))))
6059breq1d 5079 . . 3 ((𝜑𝑞𝐵) → ((𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6160reubidva 3391 . 2 (𝜑 → (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6250, 61mpbird 259 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wtru 1537  wcel 2113  wne 3019  ∃!wreu 3143   class class class wbr 5069  cfv 6358  (class class class)co 7159   < clt 10678  Basecbs 16486  +gcplusg 16568  .rcmulr 16569  0gc0g 16716  -gcsg 18108  Ringcrg 19300  opprcoppr 19375  Unitcui 19392  Poly1cpl1 20348  coe1cco1 20349   deg1 cdg1 24651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-0g 16718  df-gsum 16719  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-subrg 19536  df-lmod 19639  df-lss 19707  df-rlreg 20059  df-psr 20139  df-mvr 20140  df-mpl 20141  df-opsr 20143  df-psr1 20351  df-vr1 20352  df-ply1 20353  df-coe1 20354  df-cnfld 20549  df-mdeg 24652  df-deg1 24653
This theorem is referenced by:  q1peqb  24751
  Copyright terms: Public domain W3C validator