Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1divalg2 | Structured version Visualization version GIF version |
Description: Reverse the order of multiplication in ply1divalg 25302 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
ply1divalg.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1divalg.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
ply1divalg.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1divalg.m | ⊢ − = (-g‘𝑃) |
ply1divalg.z | ⊢ 0 = (0g‘𝑃) |
ply1divalg.t | ⊢ ∙ = (.r‘𝑃) |
ply1divalg.r1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ply1divalg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
ply1divalg.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
ply1divalg.g2 | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
ply1divalg.g3 | ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) |
ply1divalg.u | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
ply1divalg2 | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Poly1‘(oppr‘𝑅)) = (Poly1‘(oppr‘𝑅)) | |
2 | ply1divalg.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
3 | eqidd 2739 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘𝑅)) | |
4 | eqid 2738 | . . . . . . . 8 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
5 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | 4, 5 | opprbas 19869 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘(oppr‘𝑅))) |
8 | eqid 2738 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
9 | 4, 8 | oppradd 19871 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑅)) |
10 | 9 | oveqi 7288 | . . . . . . 7 ⊢ (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟) |
11 | 10 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟)) |
12 | 3, 7, 11 | deg1propd 25251 | . . . . 5 ⊢ (⊤ → ( deg1 ‘𝑅) = ( deg1 ‘(oppr‘𝑅))) |
13 | 12 | mptru 1546 | . . . 4 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘(oppr‘𝑅)) |
14 | 2, 13 | eqtri 2766 | . . 3 ⊢ 𝐷 = ( deg1 ‘(oppr‘𝑅)) |
15 | ply1divalg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
16 | ply1divalg.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
17 | 16 | fveq2i 6777 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘(Poly1‘𝑅)) |
18 | 3, 7, 11 | ply1baspropd 21414 | . . . . . 6 ⊢ (⊤ → (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅)))) |
19 | 18 | mptru 1546 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅))) |
20 | 17, 19 | eqtri 2766 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅))) |
21 | 15, 20 | eqtri 2766 | . . 3 ⊢ 𝐵 = (Base‘(Poly1‘(oppr‘𝑅))) |
22 | ply1divalg.m | . . . 4 ⊢ − = (-g‘𝑃) | |
23 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅)))) |
24 | 16 | fveq2i 6777 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘(Poly1‘𝑅)) |
25 | 3, 7, 11 | ply1plusgpropd 21415 | . . . . . . . . 9 ⊢ (⊤ → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅)))) |
26 | 25 | mptru 1546 | . . . . . . . 8 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅))) |
27 | 24, 26 | eqtri 2766 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅))) |
28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅)))) |
29 | 23, 28 | grpsubpropd 18680 | . . . . 5 ⊢ (⊤ → (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅)))) |
30 | 29 | mptru 1546 | . . . 4 ⊢ (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅))) |
31 | 22, 30 | eqtri 2766 | . . 3 ⊢ − = (-g‘(Poly1‘(oppr‘𝑅))) |
32 | ply1divalg.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
33 | 15 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘𝑃)) |
34 | 21 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘(Poly1‘(oppr‘𝑅)))) |
35 | 27 | oveqi 7288 | . . . . . . 7 ⊢ (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟)) |
37 | 33, 34, 36 | grpidpropd 18346 | . . . . 5 ⊢ (⊤ → (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅)))) |
38 | 37 | mptru 1546 | . . . 4 ⊢ (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅))) |
39 | 32, 38 | eqtri 2766 | . . 3 ⊢ 0 = (0g‘(Poly1‘(oppr‘𝑅))) |
40 | eqid 2738 | . . 3 ⊢ (.r‘(Poly1‘(oppr‘𝑅))) = (.r‘(Poly1‘(oppr‘𝑅))) | |
41 | ply1divalg.r1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
42 | 4 | opprring 19873 | . . . 4 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
43 | 41, 42 | syl 17 | . . 3 ⊢ (𝜑 → (oppr‘𝑅) ∈ Ring) |
44 | ply1divalg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
45 | ply1divalg.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
46 | ply1divalg.g2 | . . 3 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
47 | ply1divalg.g3 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) | |
48 | ply1divalg.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
49 | 48, 4 | opprunit 19903 | . . 3 ⊢ 𝑈 = (Unit‘(oppr‘𝑅)) |
50 | 1, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49 | ply1divalg 25302 | . 2 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺)) |
51 | 41 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑅 ∈ Ring) |
52 | 45 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
53 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑞 ∈ 𝐵) | |
54 | ply1divalg.t | . . . . . . . . 9 ⊢ ∙ = (.r‘𝑃) | |
55 | 16, 4, 1, 54, 40, 15 | ply1opprmul 21410 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
56 | 51, 52, 53, 55 | syl3anc 1370 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
57 | 56 | eqcomd 2744 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝑞 ∙ 𝐺) = (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)) |
58 | 57 | oveq2d 7291 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹 − (𝑞 ∙ 𝐺)) = (𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) |
59 | 58 | fveq2d 6778 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) = (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)))) |
60 | 59 | breq1d 5084 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
61 | 60 | reubidva 3322 | . 2 ⊢ (𝜑 → (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
62 | 50, 61 | mpbird 256 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ≠ wne 2943 ∃!wreu 3066 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 < clt 11009 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 0gc0g 17150 -gcsg 18579 Ringcrg 19783 opprcoppr 19861 Unitcui 19881 Poly1cpl1 21348 coe1cco1 21349 deg1 cdg1 25216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-subrg 20022 df-lmod 20125 df-lss 20194 df-rlreg 20554 df-cnfld 20598 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-vr1 21352 df-ply1 21353 df-coe1 21354 df-mdeg 25217 df-deg1 25218 |
This theorem is referenced by: q1peqb 25319 |
Copyright terms: Public domain | W3C validator |