Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1divalg2 | Structured version Visualization version GIF version |
Description: Reverse the order of multiplication in ply1divalg 25207 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
ply1divalg.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1divalg.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
ply1divalg.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1divalg.m | ⊢ − = (-g‘𝑃) |
ply1divalg.z | ⊢ 0 = (0g‘𝑃) |
ply1divalg.t | ⊢ ∙ = (.r‘𝑃) |
ply1divalg.r1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ply1divalg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
ply1divalg.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
ply1divalg.g2 | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
ply1divalg.g3 | ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) |
ply1divalg.u | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
ply1divalg2 | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Poly1‘(oppr‘𝑅)) = (Poly1‘(oppr‘𝑅)) | |
2 | ply1divalg.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
3 | eqidd 2739 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘𝑅)) | |
4 | eqid 2738 | . . . . . . . 8 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
5 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | 4, 5 | opprbas 19784 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘(oppr‘𝑅))) |
8 | eqid 2738 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
9 | 4, 8 | oppradd 19786 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑅)) |
10 | 9 | oveqi 7268 | . . . . . . 7 ⊢ (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟) |
11 | 10 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟)) |
12 | 3, 7, 11 | deg1propd 25156 | . . . . 5 ⊢ (⊤ → ( deg1 ‘𝑅) = ( deg1 ‘(oppr‘𝑅))) |
13 | 12 | mptru 1546 | . . . 4 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘(oppr‘𝑅)) |
14 | 2, 13 | eqtri 2766 | . . 3 ⊢ 𝐷 = ( deg1 ‘(oppr‘𝑅)) |
15 | ply1divalg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
16 | ply1divalg.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
17 | 16 | fveq2i 6759 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘(Poly1‘𝑅)) |
18 | 3, 7, 11 | ply1baspropd 21324 | . . . . . 6 ⊢ (⊤ → (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅)))) |
19 | 18 | mptru 1546 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅))) |
20 | 17, 19 | eqtri 2766 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅))) |
21 | 15, 20 | eqtri 2766 | . . 3 ⊢ 𝐵 = (Base‘(Poly1‘(oppr‘𝑅))) |
22 | ply1divalg.m | . . . 4 ⊢ − = (-g‘𝑃) | |
23 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅)))) |
24 | 16 | fveq2i 6759 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘(Poly1‘𝑅)) |
25 | 3, 7, 11 | ply1plusgpropd 21325 | . . . . . . . . 9 ⊢ (⊤ → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅)))) |
26 | 25 | mptru 1546 | . . . . . . . 8 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅))) |
27 | 24, 26 | eqtri 2766 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅))) |
28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅)))) |
29 | 23, 28 | grpsubpropd 18595 | . . . . 5 ⊢ (⊤ → (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅)))) |
30 | 29 | mptru 1546 | . . . 4 ⊢ (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅))) |
31 | 22, 30 | eqtri 2766 | . . 3 ⊢ − = (-g‘(Poly1‘(oppr‘𝑅))) |
32 | ply1divalg.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
33 | 15 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘𝑃)) |
34 | 21 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘(Poly1‘(oppr‘𝑅)))) |
35 | 27 | oveqi 7268 | . . . . . . 7 ⊢ (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟)) |
37 | 33, 34, 36 | grpidpropd 18261 | . . . . 5 ⊢ (⊤ → (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅)))) |
38 | 37 | mptru 1546 | . . . 4 ⊢ (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅))) |
39 | 32, 38 | eqtri 2766 | . . 3 ⊢ 0 = (0g‘(Poly1‘(oppr‘𝑅))) |
40 | eqid 2738 | . . 3 ⊢ (.r‘(Poly1‘(oppr‘𝑅))) = (.r‘(Poly1‘(oppr‘𝑅))) | |
41 | ply1divalg.r1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
42 | 4 | opprring 19788 | . . . 4 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
43 | 41, 42 | syl 17 | . . 3 ⊢ (𝜑 → (oppr‘𝑅) ∈ Ring) |
44 | ply1divalg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
45 | ply1divalg.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
46 | ply1divalg.g2 | . . 3 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
47 | ply1divalg.g3 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) | |
48 | ply1divalg.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
49 | 48, 4 | opprunit 19818 | . . 3 ⊢ 𝑈 = (Unit‘(oppr‘𝑅)) |
50 | 1, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49 | ply1divalg 25207 | . 2 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺)) |
51 | 41 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑅 ∈ Ring) |
52 | 45 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
53 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑞 ∈ 𝐵) | |
54 | ply1divalg.t | . . . . . . . . 9 ⊢ ∙ = (.r‘𝑃) | |
55 | 16, 4, 1, 54, 40, 15 | ply1opprmul 21320 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
56 | 51, 52, 53, 55 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
57 | 56 | eqcomd 2744 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝑞 ∙ 𝐺) = (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)) |
58 | 57 | oveq2d 7271 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹 − (𝑞 ∙ 𝐺)) = (𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) |
59 | 58 | fveq2d 6760 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) = (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)))) |
60 | 59 | breq1d 5080 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
61 | 60 | reubidva 3314 | . 2 ⊢ (𝜑 → (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
62 | 50, 61 | mpbird 256 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2942 ∃!wreu 3065 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 < clt 10940 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 -gcsg 18494 Ringcrg 19698 opprcoppr 19776 Unitcui 19796 Poly1cpl1 21258 coe1cco1 21259 deg1 cdg1 25121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-subrg 19937 df-lmod 20040 df-lss 20109 df-rlreg 20467 df-cnfld 20511 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-coe1 21264 df-mdeg 25122 df-deg1 25123 |
This theorem is referenced by: q1peqb 25224 |
Copyright terms: Public domain | W3C validator |