| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1divalg2 | Structured version Visualization version GIF version | ||
| Description: Reverse the order of multiplication in ply1divalg 26050 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1divalg.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1divalg.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1divalg.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1divalg.m | ⊢ − = (-g‘𝑃) |
| ply1divalg.z | ⊢ 0 = (0g‘𝑃) |
| ply1divalg.t | ⊢ ∙ = (.r‘𝑃) |
| ply1divalg.r1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ply1divalg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| ply1divalg.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| ply1divalg.g2 | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
| ply1divalg.g3 | ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) |
| ply1divalg.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| ply1divalg2 | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Poly1‘(oppr‘𝑅)) = (Poly1‘(oppr‘𝑅)) | |
| 2 | ply1divalg.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 3 | eqidd 2731 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘𝑅)) | |
| 4 | eqid 2730 | . . . . . . . 8 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 5 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 4, 5 | opprbas 20259 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘(oppr‘𝑅))) |
| 8 | eqid 2730 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | 4, 8 | oppradd 20260 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑅)) |
| 10 | 9 | oveqi 7403 | . . . . . . 7 ⊢ (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟) |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟)) |
| 12 | 3, 7, 11 | deg1propd 25998 | . . . . 5 ⊢ (⊤ → (deg1‘𝑅) = (deg1‘(oppr‘𝑅))) |
| 13 | 12 | mptru 1547 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘(oppr‘𝑅)) |
| 14 | 2, 13 | eqtri 2753 | . . 3 ⊢ 𝐷 = (deg1‘(oppr‘𝑅)) |
| 15 | ply1divalg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 16 | ply1divalg.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 17 | 16 | fveq2i 6864 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘(Poly1‘𝑅)) |
| 18 | 3, 7, 11 | ply1baspropd 22134 | . . . . . 6 ⊢ (⊤ → (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅)))) |
| 19 | 18 | mptru 1547 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅))) |
| 20 | 17, 19 | eqtri 2753 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅))) |
| 21 | 15, 20 | eqtri 2753 | . . 3 ⊢ 𝐵 = (Base‘(Poly1‘(oppr‘𝑅))) |
| 22 | ply1divalg.m | . . . 4 ⊢ − = (-g‘𝑃) | |
| 23 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅)))) |
| 24 | 16 | fveq2i 6864 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘(Poly1‘𝑅)) |
| 25 | 3, 7, 11 | ply1plusgpropd 22135 | . . . . . . . . 9 ⊢ (⊤ → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅)))) |
| 26 | 25 | mptru 1547 | . . . . . . . 8 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅))) |
| 27 | 24, 26 | eqtri 2753 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅))) |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅)))) |
| 29 | 23, 28 | grpsubpropd 18984 | . . . . 5 ⊢ (⊤ → (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅)))) |
| 30 | 29 | mptru 1547 | . . . 4 ⊢ (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅))) |
| 31 | 22, 30 | eqtri 2753 | . . 3 ⊢ − = (-g‘(Poly1‘(oppr‘𝑅))) |
| 32 | ply1divalg.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 33 | 15 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘𝑃)) |
| 34 | 21 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘(Poly1‘(oppr‘𝑅)))) |
| 35 | 27 | oveqi 7403 | . . . . . . 7 ⊢ (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟) |
| 36 | 35 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟)) |
| 37 | 33, 34, 36 | grpidpropd 18596 | . . . . 5 ⊢ (⊤ → (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅)))) |
| 38 | 37 | mptru 1547 | . . . 4 ⊢ (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅))) |
| 39 | 32, 38 | eqtri 2753 | . . 3 ⊢ 0 = (0g‘(Poly1‘(oppr‘𝑅))) |
| 40 | eqid 2730 | . . 3 ⊢ (.r‘(Poly1‘(oppr‘𝑅))) = (.r‘(Poly1‘(oppr‘𝑅))) | |
| 41 | ply1divalg.r1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 42 | 4 | opprring 20263 | . . . 4 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
| 43 | 41, 42 | syl 17 | . . 3 ⊢ (𝜑 → (oppr‘𝑅) ∈ Ring) |
| 44 | ply1divalg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 45 | ply1divalg.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 46 | ply1divalg.g2 | . . 3 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
| 47 | ply1divalg.g3 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) | |
| 48 | ply1divalg.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 49 | 48, 4 | opprunit 20293 | . . 3 ⊢ 𝑈 = (Unit‘(oppr‘𝑅)) |
| 50 | 1, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49 | ply1divalg 26050 | . 2 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺)) |
| 51 | 41 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 52 | 45 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
| 53 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑞 ∈ 𝐵) | |
| 54 | ply1divalg.t | . . . . . . . . 9 ⊢ ∙ = (.r‘𝑃) | |
| 55 | 16, 4, 1, 54, 40, 15 | ply1opprmul 22130 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
| 56 | 51, 52, 53, 55 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
| 57 | 56 | eqcomd 2736 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝑞 ∙ 𝐺) = (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)) |
| 58 | 57 | oveq2d 7406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹 − (𝑞 ∙ 𝐺)) = (𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) |
| 59 | 58 | fveq2d 6865 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) = (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)))) |
| 60 | 59 | breq1d 5120 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
| 61 | 60 | reubidva 3372 | . 2 ⊢ (𝜑 → (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
| 62 | 50, 61 | mpbird 257 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2926 ∃!wreu 3354 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 < clt 11215 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 0gc0g 17409 -gcsg 18874 Ringcrg 20149 opprcoppr 20252 Unitcui 20271 Poly1cpl1 22068 coe1cco1 22069 deg1cdg1 25966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-subrng 20462 df-subrg 20486 df-rlreg 20610 df-lmod 20775 df-lss 20845 df-cnfld 21272 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-coe1 22074 df-mdeg 25967 df-deg1 25968 |
| This theorem is referenced by: q1peqb 26068 ply1divalg3 35636 |
| Copyright terms: Public domain | W3C validator |