MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg2 Structured version   Visualization version   GIF version

Theorem ply1divalg2 25036
Description: Reverse the order of multiplication in ply1divalg 25035 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divalg.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
ply1divalg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ply1divalg2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   0 ,𝑞
Allowed substitution hint:   𝑈(𝑞)

Proof of Theorem ply1divalg2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Poly1‘(oppr𝑅)) = (Poly1‘(oppr𝑅))
2 ply1divalg.d . . . 4 𝐷 = ( deg1𝑅)
3 eqidd 2738 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘𝑅))
4 eqid 2737 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
5 eqid 2737 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
64, 5opprbas 19647 . . . . . . 7 (Base‘𝑅) = (Base‘(oppr𝑅))
76a1i 11 . . . . . 6 (⊤ → (Base‘𝑅) = (Base‘(oppr𝑅)))
8 eqid 2737 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
94, 8oppradd 19648 . . . . . . . 8 (+g𝑅) = (+g‘(oppr𝑅))
109oveqi 7226 . . . . . . 7 (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟)
1110a1i 11 . . . . . 6 ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g𝑅)𝑟) = (𝑞(+g‘(oppr𝑅))𝑟))
123, 7, 11deg1propd 24984 . . . . 5 (⊤ → ( deg1𝑅) = ( deg1 ‘(oppr𝑅)))
1312mptru 1550 . . . 4 ( deg1𝑅) = ( deg1 ‘(oppr𝑅))
142, 13eqtri 2765 . . 3 𝐷 = ( deg1 ‘(oppr𝑅))
15 ply1divalg.b . . . 4 𝐵 = (Base‘𝑃)
16 ply1divalg.p . . . . . 6 𝑃 = (Poly1𝑅)
1716fveq2i 6720 . . . . 5 (Base‘𝑃) = (Base‘(Poly1𝑅))
183, 7, 11ply1baspropd 21164 . . . . . 6 (⊤ → (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅))))
1918mptru 1550 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1‘(oppr𝑅)))
2017, 19eqtri 2765 . . . 4 (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅)))
2115, 20eqtri 2765 . . 3 𝐵 = (Base‘(Poly1‘(oppr𝑅)))
22 ply1divalg.m . . . 4 = (-g𝑃)
2320a1i 11 . . . . . 6 (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr𝑅))))
2416fveq2i 6720 . . . . . . . 8 (+g𝑃) = (+g‘(Poly1𝑅))
253, 7, 11ply1plusgpropd 21165 . . . . . . . . 9 (⊤ → (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅))))
2625mptru 1550 . . . . . . . 8 (+g‘(Poly1𝑅)) = (+g‘(Poly1‘(oppr𝑅)))
2724, 26eqtri 2765 . . . . . . 7 (+g𝑃) = (+g‘(Poly1‘(oppr𝑅)))
2827a1i 11 . . . . . 6 (⊤ → (+g𝑃) = (+g‘(Poly1‘(oppr𝑅))))
2923, 28grpsubpropd 18468 . . . . 5 (⊤ → (-g𝑃) = (-g‘(Poly1‘(oppr𝑅))))
3029mptru 1550 . . . 4 (-g𝑃) = (-g‘(Poly1‘(oppr𝑅)))
3122, 30eqtri 2765 . . 3 = (-g‘(Poly1‘(oppr𝑅)))
32 ply1divalg.z . . . 4 0 = (0g𝑃)
3315a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘𝑃))
3421a1i 11 . . . . . 6 (⊤ → 𝐵 = (Base‘(Poly1‘(oppr𝑅))))
3527oveqi 7226 . . . . . . 7 (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟)
3635a1i 11 . . . . . 6 ((⊤ ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr𝑅)))𝑟))
3733, 34, 36grpidpropd 18134 . . . . 5 (⊤ → (0g𝑃) = (0g‘(Poly1‘(oppr𝑅))))
3837mptru 1550 . . . 4 (0g𝑃) = (0g‘(Poly1‘(oppr𝑅)))
3932, 38eqtri 2765 . . 3 0 = (0g‘(Poly1‘(oppr𝑅)))
40 eqid 2737 . . 3 (.r‘(Poly1‘(oppr𝑅))) = (.r‘(Poly1‘(oppr𝑅)))
41 ply1divalg.r1 . . . 4 (𝜑𝑅 ∈ Ring)
424opprring 19649 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
4341, 42syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
44 ply1divalg.f . . 3 (𝜑𝐹𝐵)
45 ply1divalg.g1 . . 3 (𝜑𝐺𝐵)
46 ply1divalg.g2 . . 3 (𝜑𝐺0 )
47 ply1divalg.g3 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
48 ply1divalg.u . . . 4 𝑈 = (Unit‘𝑅)
4948, 4opprunit 19679 . . 3 𝑈 = (Unit‘(oppr𝑅))
501, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49ply1divalg 25035 . 2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺))
5141adantr 484 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑅 ∈ Ring)
5245adantr 484 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝐺𝐵)
53 simpr 488 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑞𝐵)
54 ply1divalg.t . . . . . . . . 9 = (.r𝑃)
5516, 4, 1, 54, 40, 15ply1opprmul 21160 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5651, 52, 53, 55syl3anc 1373 . . . . . . 7 ((𝜑𝑞𝐵) → (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞) = (𝑞 𝐺))
5756eqcomd 2743 . . . . . 6 ((𝜑𝑞𝐵) → (𝑞 𝐺) = (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))
5857oveq2d 7229 . . . . 5 ((𝜑𝑞𝐵) → (𝐹 (𝑞 𝐺)) = (𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞)))
5958fveq2d 6721 . . . 4 ((𝜑𝑞𝐵) → (𝐷‘(𝐹 (𝑞 𝐺))) = (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))))
6059breq1d 5063 . . 3 ((𝜑𝑞𝐵) → ((𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6160reubidva 3300 . 2 (𝜑 → (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺(.r‘(Poly1‘(oppr𝑅)))𝑞))) < (𝐷𝐺)))
6250, 61mpbird 260 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wtru 1544  wcel 2110  wne 2940  ∃!wreu 3063   class class class wbr 5053  cfv 6380  (class class class)co 7213   < clt 10867  Basecbs 16760  +gcplusg 16802  .rcmulr 16803  0gc0g 16944  -gcsg 18367  Ringcrg 19562  opprcoppr 19640  Unitcui 19657  Poly1cpl1 21098  coe1cco1 21099   deg1 cdg1 24949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-0g 16946  df-gsum 16947  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-subrg 19798  df-lmod 19901  df-lss 19969  df-rlreg 20321  df-cnfld 20364  df-psr 20868  df-mvr 20869  df-mpl 20870  df-opsr 20872  df-psr1 21101  df-vr1 21102  df-ply1 21103  df-coe1 21104  df-mdeg 24950  df-deg1 24951
This theorem is referenced by:  q1peqb  25052
  Copyright terms: Public domain W3C validator