| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1divalg2 | Structured version Visualization version GIF version | ||
| Description: Reverse the order of multiplication in ply1divalg 26043 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1divalg.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1divalg.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1divalg.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1divalg.m | ⊢ − = (-g‘𝑃) |
| ply1divalg.z | ⊢ 0 = (0g‘𝑃) |
| ply1divalg.t | ⊢ ∙ = (.r‘𝑃) |
| ply1divalg.r1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ply1divalg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| ply1divalg.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| ply1divalg.g2 | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
| ply1divalg.g3 | ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) |
| ply1divalg.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| ply1divalg2 | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Poly1‘(oppr‘𝑅)) = (Poly1‘(oppr‘𝑅)) | |
| 2 | ply1divalg.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 3 | eqidd 2730 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘𝑅)) | |
| 4 | eqid 2729 | . . . . . . . 8 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 4, 5 | opprbas 20252 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑅) = (Base‘(oppr‘𝑅))) |
| 8 | eqid 2729 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | 4, 8 | oppradd 20253 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑅)) |
| 10 | 9 | oveqi 7400 | . . . . . . 7 ⊢ (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟) |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(+g‘𝑅)𝑟) = (𝑞(+g‘(oppr‘𝑅))𝑟)) |
| 12 | 3, 7, 11 | deg1propd 25991 | . . . . 5 ⊢ (⊤ → (deg1‘𝑅) = (deg1‘(oppr‘𝑅))) |
| 13 | 12 | mptru 1547 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘(oppr‘𝑅)) |
| 14 | 2, 13 | eqtri 2752 | . . 3 ⊢ 𝐷 = (deg1‘(oppr‘𝑅)) |
| 15 | ply1divalg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 16 | ply1divalg.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 17 | 16 | fveq2i 6861 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘(Poly1‘𝑅)) |
| 18 | 3, 7, 11 | ply1baspropd 22127 | . . . . . 6 ⊢ (⊤ → (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅)))) |
| 19 | 18 | mptru 1547 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘(oppr‘𝑅))) |
| 20 | 17, 19 | eqtri 2752 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅))) |
| 21 | 15, 20 | eqtri 2752 | . . 3 ⊢ 𝐵 = (Base‘(Poly1‘(oppr‘𝑅))) |
| 22 | ply1divalg.m | . . . 4 ⊢ − = (-g‘𝑃) | |
| 23 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (Base‘𝑃) = (Base‘(Poly1‘(oppr‘𝑅)))) |
| 24 | 16 | fveq2i 6861 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘(Poly1‘𝑅)) |
| 25 | 3, 7, 11 | ply1plusgpropd 22128 | . . . . . . . . 9 ⊢ (⊤ → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅)))) |
| 26 | 25 | mptru 1547 | . . . . . . . 8 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘(oppr‘𝑅))) |
| 27 | 24, 26 | eqtri 2752 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅))) |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → (+g‘𝑃) = (+g‘(Poly1‘(oppr‘𝑅)))) |
| 29 | 23, 28 | grpsubpropd 18977 | . . . . 5 ⊢ (⊤ → (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅)))) |
| 30 | 29 | mptru 1547 | . . . 4 ⊢ (-g‘𝑃) = (-g‘(Poly1‘(oppr‘𝑅))) |
| 31 | 22, 30 | eqtri 2752 | . . 3 ⊢ − = (-g‘(Poly1‘(oppr‘𝑅))) |
| 32 | ply1divalg.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 33 | 15 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘𝑃)) |
| 34 | 21 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐵 = (Base‘(Poly1‘(oppr‘𝑅)))) |
| 35 | 27 | oveqi 7400 | . . . . . . 7 ⊢ (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟) |
| 36 | 35 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞(+g‘(Poly1‘(oppr‘𝑅)))𝑟)) |
| 37 | 33, 34, 36 | grpidpropd 18589 | . . . . 5 ⊢ (⊤ → (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅)))) |
| 38 | 37 | mptru 1547 | . . . 4 ⊢ (0g‘𝑃) = (0g‘(Poly1‘(oppr‘𝑅))) |
| 39 | 32, 38 | eqtri 2752 | . . 3 ⊢ 0 = (0g‘(Poly1‘(oppr‘𝑅))) |
| 40 | eqid 2729 | . . 3 ⊢ (.r‘(Poly1‘(oppr‘𝑅))) = (.r‘(Poly1‘(oppr‘𝑅))) | |
| 41 | ply1divalg.r1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 42 | 4 | opprring 20256 | . . . 4 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
| 43 | 41, 42 | syl 17 | . . 3 ⊢ (𝜑 → (oppr‘𝑅) ∈ Ring) |
| 44 | ply1divalg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 45 | ply1divalg.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 46 | ply1divalg.g2 | . . 3 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
| 47 | ply1divalg.g3 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) | |
| 48 | ply1divalg.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 49 | 48, 4 | opprunit 20286 | . . 3 ⊢ 𝑈 = (Unit‘(oppr‘𝑅)) |
| 50 | 1, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49 | ply1divalg 26043 | . 2 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺)) |
| 51 | 41 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 52 | 45 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
| 53 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑞 ∈ 𝐵) | |
| 54 | ply1divalg.t | . . . . . . . . 9 ⊢ ∙ = (.r‘𝑃) | |
| 55 | 16, 4, 1, 54, 40, 15 | ply1opprmul 22123 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
| 56 | 51, 52, 53, 55 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞) = (𝑞 ∙ 𝐺)) |
| 57 | 56 | eqcomd 2735 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝑞 ∙ 𝐺) = (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)) |
| 58 | 57 | oveq2d 7403 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹 − (𝑞 ∙ 𝐺)) = (𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) |
| 59 | 58 | fveq2d 6862 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) = (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞)))) |
| 60 | 59 | breq1d 5117 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
| 61 | 60 | reubidva 3370 | . 2 ⊢ (𝜑 → (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺(.r‘(Poly1‘(oppr‘𝑅)))𝑞))) < (𝐷‘𝐺))) |
| 62 | 50, 61 | mpbird 257 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∃!wreu 3352 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 < clt 11208 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 0gc0g 17402 -gcsg 18867 Ringcrg 20142 opprcoppr 20245 Unitcui 20264 Poly1cpl1 22061 coe1cco1 22062 deg1cdg1 25959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrng 20455 df-subrg 20479 df-rlreg 20603 df-lmod 20768 df-lss 20838 df-cnfld 21265 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-mdeg 25960 df-deg1 25961 |
| This theorem is referenced by: q1peqb 26061 ply1divalg3 35629 |
| Copyright terms: Public domain | W3C validator |