MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqn2reu Structured version   Visualization version   GIF version

Theorem addsqn2reu 27499
Description: For each complex number 𝐶, there does not exist a unique complex number 𝑏, squared and added to a unique another complex number 𝑎 resulting in the given complex number 𝐶. Actually, for each complex number 𝑏, 𝑎 = (𝐶 − (𝑏↑2)) is unique.

Remark: This, together with addsq2reu 27498, shows that commutation of two unique quantifications need not be equivalent, and provides an evident justification of the fact that considering the pair of variables is necessary to obtain what we intuitively understand as "double unique existence". (Proposed by GL, 23-Jun-2023.). (Contributed by AV, 23-Jun-2023.)

Assertion
Ref Expression
addsqn2reu (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsqn2reu
StepHypRef Expression
1 ax-1cn 11210 . . 3 1 ∈ ℂ
2 neg1cn 12377 . . 3 -1 ∈ ℂ
3 1nn 12274 . . . 4 1 ∈ ℕ
4 nnneneg 12298 . . . 4 (1 ∈ ℕ → 1 ≠ -1)
53, 4ax-mp 5 . . 3 1 ≠ -1
61, 2, 53pm3.2i 1338 . 2 (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1)
7 1cnd 11253 . . . . 5 (𝐶 ∈ ℂ → 1 ∈ ℂ)
8 negeu 11495 . . . . 5 ((1 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)
97, 8mpancom 688 . . . 4 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)
10 sq1 14230 . . . . . . . . 9 (1↑2) = 1
1110a1i 11 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1↑2) = 1)
1211oveq2d 7446 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (𝑎 + 1))
13 id 22 . . . . . . . . 9 (𝑎 ∈ ℂ → 𝑎 ∈ ℂ)
14 1cnd 11253 . . . . . . . . 9 (𝑎 ∈ ℂ → 1 ∈ ℂ)
1513, 14addcomd 11460 . . . . . . . 8 (𝑎 ∈ ℂ → (𝑎 + 1) = (1 + 𝑎))
1615adantl 481 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + 1) = (1 + 𝑎))
1712, 16eqtrd 2774 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (1 + 𝑎))
1817eqeq1d 2736 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶))
1918reubidva 3393 . . . 4 (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶))
209, 19mpbird 257 . . 3 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶)
21 neg1sqe1 14231 . . . . . . . . 9 (-1↑2) = 1
2221a1i 11 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (-1↑2) = 1)
2322oveq2d 7446 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (𝑎 + 1))
2423, 16eqtrd 2774 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (1 + 𝑎))
2524eqeq1d 2736 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (-1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶))
2625reubidva 3393 . . . 4 (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶))
279, 26mpbird 257 . . 3 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶)
2820, 27jca 511 . 2 (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶))
29 oveq1 7437 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
3029oveq2d 7446 . . . . 5 (𝑏 = 1 → (𝑎 + (𝑏↑2)) = (𝑎 + (1↑2)))
3130eqeq1d 2736 . . . 4 (𝑏 = 1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (1↑2)) = 𝐶))
3231reubidv 3395 . . 3 (𝑏 = 1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶))
33 oveq1 7437 . . . . . 6 (𝑏 = -1 → (𝑏↑2) = (-1↑2))
3433oveq2d 7446 . . . . 5 (𝑏 = -1 → (𝑎 + (𝑏↑2)) = (𝑎 + (-1↑2)))
3534eqeq1d 2736 . . . 4 (𝑏 = -1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (-1↑2)) = 𝐶))
3635reubidv 3395 . . 3 (𝑏 = -1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶))
3732, 362nreu 4449 . 2 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶) → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶))
386, 28, 37mpsyl 68 1 (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  ∃!wreu 3375  (class class class)co 7430  cc 11150  1c1 11153   + caddc 11155  -cneg 11490  cn 12263  2c2 12318  cexp 14098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-exp 14099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator