MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqn2reu Structured version   Visualization version   GIF version

Theorem addsqn2reu 27485
Description: For each complex number 𝐶, there does not exist a unique complex number 𝑏, squared and added to a unique another complex number 𝑎 resulting in the given complex number 𝐶. Actually, for each complex number 𝑏, 𝑎 = (𝐶 − (𝑏↑2)) is unique.

Remark: This, together with addsq2reu 27484, shows that commutation of two unique quantifications need not be equivalent, and provides an evident justification of the fact that considering the pair of variables is necessary to obtain what we intuitively understand as "double unique existence". (Proposed by GL, 23-Jun-2023.). (Contributed by AV, 23-Jun-2023.)

Assertion
Ref Expression
addsqn2reu (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsqn2reu
StepHypRef Expression
1 ax-1cn 11213 . . 3 1 ∈ ℂ
2 neg1cn 12380 . . 3 -1 ∈ ℂ
3 1nn 12277 . . . 4 1 ∈ ℕ
4 nnneneg 12301 . . . 4 (1 ∈ ℕ → 1 ≠ -1)
53, 4ax-mp 5 . . 3 1 ≠ -1
61, 2, 53pm3.2i 1340 . 2 (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1)
7 1cnd 11256 . . . . 5 (𝐶 ∈ ℂ → 1 ∈ ℂ)
8 negeu 11498 . . . . 5 ((1 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)
97, 8mpancom 688 . . . 4 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)
10 sq1 14234 . . . . . . . . 9 (1↑2) = 1
1110a1i 11 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1↑2) = 1)
1211oveq2d 7447 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (𝑎 + 1))
13 id 22 . . . . . . . . 9 (𝑎 ∈ ℂ → 𝑎 ∈ ℂ)
14 1cnd 11256 . . . . . . . . 9 (𝑎 ∈ ℂ → 1 ∈ ℂ)
1513, 14addcomd 11463 . . . . . . . 8 (𝑎 ∈ ℂ → (𝑎 + 1) = (1 + 𝑎))
1615adantl 481 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + 1) = (1 + 𝑎))
1712, 16eqtrd 2777 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (1 + 𝑎))
1817eqeq1d 2739 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶))
1918reubidva 3396 . . . 4 (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶))
209, 19mpbird 257 . . 3 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶)
21 neg1sqe1 14235 . . . . . . . . 9 (-1↑2) = 1
2221a1i 11 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (-1↑2) = 1)
2322oveq2d 7447 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (𝑎 + 1))
2423, 16eqtrd 2777 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (1 + 𝑎))
2524eqeq1d 2739 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (-1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶))
2625reubidva 3396 . . . 4 (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶))
279, 26mpbird 257 . . 3 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶)
2820, 27jca 511 . 2 (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶))
29 oveq1 7438 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
3029oveq2d 7447 . . . . 5 (𝑏 = 1 → (𝑎 + (𝑏↑2)) = (𝑎 + (1↑2)))
3130eqeq1d 2739 . . . 4 (𝑏 = 1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (1↑2)) = 𝐶))
3231reubidv 3398 . . 3 (𝑏 = 1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶))
33 oveq1 7438 . . . . . 6 (𝑏 = -1 → (𝑏↑2) = (-1↑2))
3433oveq2d 7447 . . . . 5 (𝑏 = -1 → (𝑎 + (𝑏↑2)) = (𝑎 + (-1↑2)))
3534eqeq1d 2739 . . . 4 (𝑏 = -1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (-1↑2)) = 𝐶))
3635reubidv 3398 . . 3 (𝑏 = -1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶))
3732, 362nreu 4444 . 2 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶) → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶))
386, 28, 37mpsyl 68 1 (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  ∃!wreu 3378  (class class class)co 7431  cc 11153  1c1 11156   + caddc 11158  -cneg 11493  cn 12266  2c2 12321  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator