MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqn2reu Structured version   Visualization version   GIF version

Theorem addsqn2reu 27359
Description: For each complex number 𝐶, there does not exist a unique complex number 𝑏, squared and added to a unique another complex number 𝑎 resulting in the given complex number 𝐶. Actually, for each complex number 𝑏, 𝑎 = (𝐶 − (𝑏↑2)) is unique.

Remark: This, together with addsq2reu 27358, shows that commutation of two unique quantifications need not be equivalent, and provides an evident justification of the fact that considering the pair of variables is necessary to obtain what we intuitively understand as "double unique existence". (Proposed by GL, 23-Jun-2023.). (Contributed by AV, 23-Jun-2023.)

Assertion
Ref Expression
addsqn2reu (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsqn2reu
StepHypRef Expression
1 ax-1cn 11133 . . 3 1 ∈ ℂ
2 neg1cn 12178 . . 3 -1 ∈ ℂ
3 1nn 12204 . . . 4 1 ∈ ℕ
4 nnneneg 12228 . . . 4 (1 ∈ ℕ → 1 ≠ -1)
53, 4ax-mp 5 . . 3 1 ≠ -1
61, 2, 53pm3.2i 1340 . 2 (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1)
7 1cnd 11176 . . . . 5 (𝐶 ∈ ℂ → 1 ∈ ℂ)
8 negeu 11418 . . . . 5 ((1 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)
97, 8mpancom 688 . . . 4 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)
10 sq1 14167 . . . . . . . . 9 (1↑2) = 1
1110a1i 11 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1↑2) = 1)
1211oveq2d 7406 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (𝑎 + 1))
13 id 22 . . . . . . . . 9 (𝑎 ∈ ℂ → 𝑎 ∈ ℂ)
14 1cnd 11176 . . . . . . . . 9 (𝑎 ∈ ℂ → 1 ∈ ℂ)
1513, 14addcomd 11383 . . . . . . . 8 (𝑎 ∈ ℂ → (𝑎 + 1) = (1 + 𝑎))
1615adantl 481 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + 1) = (1 + 𝑎))
1712, 16eqtrd 2765 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (1 + 𝑎))
1817eqeq1d 2732 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶))
1918reubidva 3372 . . . 4 (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶))
209, 19mpbird 257 . . 3 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶)
21 neg1sqe1 14168 . . . . . . . . 9 (-1↑2) = 1
2221a1i 11 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (-1↑2) = 1)
2322oveq2d 7406 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (𝑎 + 1))
2423, 16eqtrd 2765 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (1 + 𝑎))
2524eqeq1d 2732 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (-1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶))
2625reubidva 3372 . . . 4 (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶))
279, 26mpbird 257 . . 3 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶)
2820, 27jca 511 . 2 (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶))
29 oveq1 7397 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
3029oveq2d 7406 . . . . 5 (𝑏 = 1 → (𝑎 + (𝑏↑2)) = (𝑎 + (1↑2)))
3130eqeq1d 2732 . . . 4 (𝑏 = 1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (1↑2)) = 𝐶))
3231reubidv 3374 . . 3 (𝑏 = 1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶))
33 oveq1 7397 . . . . . 6 (𝑏 = -1 → (𝑏↑2) = (-1↑2))
3433oveq2d 7406 . . . . 5 (𝑏 = -1 → (𝑎 + (𝑏↑2)) = (𝑎 + (-1↑2)))
3534eqeq1d 2732 . . . 4 (𝑏 = -1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (-1↑2)) = 𝐶))
3635reubidv 3374 . . 3 (𝑏 = -1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶))
3732, 362nreu 4410 . 2 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶) → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶))
386, 28, 37mpsyl 68 1 (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  ∃!wreu 3354  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078  -cneg 11413  cn 12193  2c2 12248  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-exp 14034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator