| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsqn2reu | Structured version Visualization version GIF version | ||
| Description: For each complex number
𝐶,
there does not exist a unique complex
number 𝑏, squared and added to a unique
another complex number
𝑎 resulting in the given complex number
𝐶.
Actually, for each
complex number 𝑏, 𝑎 = (𝐶 − (𝑏↑2)) is unique.
Remark: This, together with addsq2reu 27358, shows that commutation of two unique quantifications need not be equivalent, and provides an evident justification of the fact that considering the pair of variables is necessary to obtain what we intuitively understand as "double unique existence". (Proposed by GL, 23-Jun-2023.). (Contributed by AV, 23-Jun-2023.) |
| Ref | Expression |
|---|---|
| addsqn2reu | ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11133 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | neg1cn 12178 | . . 3 ⊢ -1 ∈ ℂ | |
| 3 | 1nn 12204 | . . . 4 ⊢ 1 ∈ ℕ | |
| 4 | nnneneg 12228 | . . . 4 ⊢ (1 ∈ ℕ → 1 ≠ -1) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1 ≠ -1 |
| 6 | 1, 2, 5 | 3pm3.2i 1340 | . 2 ⊢ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) |
| 7 | 1cnd 11176 | . . . . 5 ⊢ (𝐶 ∈ ℂ → 1 ∈ ℂ) | |
| 8 | negeu 11418 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶) | |
| 9 | 7, 8 | mpancom 688 | . . . 4 ⊢ (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶) |
| 10 | sq1 14167 | . . . . . . . . 9 ⊢ (1↑2) = 1 | |
| 11 | 10 | a1i 11 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1↑2) = 1) |
| 12 | 11 | oveq2d 7406 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (𝑎 + 1)) |
| 13 | id 22 | . . . . . . . . 9 ⊢ (𝑎 ∈ ℂ → 𝑎 ∈ ℂ) | |
| 14 | 1cnd 11176 | . . . . . . . . 9 ⊢ (𝑎 ∈ ℂ → 1 ∈ ℂ) | |
| 15 | 13, 14 | addcomd 11383 | . . . . . . . 8 ⊢ (𝑎 ∈ ℂ → (𝑎 + 1) = (1 + 𝑎)) |
| 16 | 15 | adantl 481 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + 1) = (1 + 𝑎)) |
| 17 | 12, 16 | eqtrd 2765 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (1 + 𝑎)) |
| 18 | 17 | eqeq1d 2732 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶)) |
| 19 | 18 | reubidva 3372 | . . . 4 ⊢ (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)) |
| 20 | 9, 19 | mpbird 257 | . . 3 ⊢ (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶) |
| 21 | neg1sqe1 14168 | . . . . . . . . 9 ⊢ (-1↑2) = 1 | |
| 22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (-1↑2) = 1) |
| 23 | 22 | oveq2d 7406 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (𝑎 + 1)) |
| 24 | 23, 16 | eqtrd 2765 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (1 + 𝑎)) |
| 25 | 24 | eqeq1d 2732 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (-1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶)) |
| 26 | 25 | reubidva 3372 | . . . 4 ⊢ (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)) |
| 27 | 9, 26 | mpbird 257 | . . 3 ⊢ (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶) |
| 28 | 20, 27 | jca 511 | . 2 ⊢ (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶)) |
| 29 | oveq1 7397 | . . . . . 6 ⊢ (𝑏 = 1 → (𝑏↑2) = (1↑2)) | |
| 30 | 29 | oveq2d 7406 | . . . . 5 ⊢ (𝑏 = 1 → (𝑎 + (𝑏↑2)) = (𝑎 + (1↑2))) |
| 31 | 30 | eqeq1d 2732 | . . . 4 ⊢ (𝑏 = 1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (1↑2)) = 𝐶)) |
| 32 | 31 | reubidv 3374 | . . 3 ⊢ (𝑏 = 1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶)) |
| 33 | oveq1 7397 | . . . . . 6 ⊢ (𝑏 = -1 → (𝑏↑2) = (-1↑2)) | |
| 34 | 33 | oveq2d 7406 | . . . . 5 ⊢ (𝑏 = -1 → (𝑎 + (𝑏↑2)) = (𝑎 + (-1↑2))) |
| 35 | 34 | eqeq1d 2732 | . . . 4 ⊢ (𝑏 = -1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (-1↑2)) = 𝐶)) |
| 36 | 35 | reubidv 3374 | . . 3 ⊢ (𝑏 = -1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶)) |
| 37 | 32, 36 | 2nreu 4410 | . 2 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶) → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)) |
| 38 | 6, 28, 37 | mpsyl 68 | 1 ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃!wreu 3354 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 -cneg 11413 ℕcn 12193 2c2 12248 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |