![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsqn2reu | Structured version Visualization version GIF version |
Description: For each complex number
𝐶,
there does not exist a unique complex
number 𝑏, squared and added to a unique
another complex number
𝑎 resulting in the given complex number
𝐶.
Actually, for each
complex number 𝑏, 𝑎 = (𝐶 − (𝑏↑2)) is unique.
Remark: This, together with addsq2reu 26940, shows that commutation of two unique quantifications need not be equivalent, and provides an evident justification of the fact that considering the pair of variables is necessary to obtain what we intuitively understand as "double unique existence". (Proposed by GL, 23-Jun-2023.). (Contributed by AV, 23-Jun-2023.) |
Ref | Expression |
---|---|
addsqn2reu | ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11167 | . . 3 ⊢ 1 ∈ ℂ | |
2 | neg1cn 12325 | . . 3 ⊢ -1 ∈ ℂ | |
3 | 1nn 12222 | . . . 4 ⊢ 1 ∈ ℕ | |
4 | nnneneg 12246 | . . . 4 ⊢ (1 ∈ ℕ → 1 ≠ -1) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1 ≠ -1 |
6 | 1, 2, 5 | 3pm3.2i 1339 | . 2 ⊢ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) |
7 | 1cnd 11208 | . . . . 5 ⊢ (𝐶 ∈ ℂ → 1 ∈ ℂ) | |
8 | negeu 11449 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶) | |
9 | 7, 8 | mpancom 686 | . . . 4 ⊢ (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶) |
10 | sq1 14158 | . . . . . . . . 9 ⊢ (1↑2) = 1 | |
11 | 10 | a1i 11 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1↑2) = 1) |
12 | 11 | oveq2d 7424 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (𝑎 + 1)) |
13 | id 22 | . . . . . . . . 9 ⊢ (𝑎 ∈ ℂ → 𝑎 ∈ ℂ) | |
14 | 1cnd 11208 | . . . . . . . . 9 ⊢ (𝑎 ∈ ℂ → 1 ∈ ℂ) | |
15 | 13, 14 | addcomd 11415 | . . . . . . . 8 ⊢ (𝑎 ∈ ℂ → (𝑎 + 1) = (1 + 𝑎)) |
16 | 15 | adantl 482 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + 1) = (1 + 𝑎)) |
17 | 12, 16 | eqtrd 2772 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (1↑2)) = (1 + 𝑎)) |
18 | 17 | eqeq1d 2734 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶)) |
19 | 18 | reubidva 3392 | . . . 4 ⊢ (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)) |
20 | 9, 19 | mpbird 256 | . . 3 ⊢ (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶) |
21 | neg1sqe1 14159 | . . . . . . . . 9 ⊢ (-1↑2) = 1 | |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (-1↑2) = 1) |
23 | 22 | oveq2d 7424 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (𝑎 + 1)) |
24 | 23, 16 | eqtrd 2772 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑎 + (-1↑2)) = (1 + 𝑎)) |
25 | 24 | eqeq1d 2734 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑎 + (-1↑2)) = 𝐶 ↔ (1 + 𝑎) = 𝐶)) |
26 | 25 | reubidva 3392 | . . . 4 ⊢ (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (1 + 𝑎) = 𝐶)) |
27 | 9, 26 | mpbird 256 | . . 3 ⊢ (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶) |
28 | 20, 27 | jca 512 | . 2 ⊢ (𝐶 ∈ ℂ → (∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶)) |
29 | oveq1 7415 | . . . . . 6 ⊢ (𝑏 = 1 → (𝑏↑2) = (1↑2)) | |
30 | 29 | oveq2d 7424 | . . . . 5 ⊢ (𝑏 = 1 → (𝑎 + (𝑏↑2)) = (𝑎 + (1↑2))) |
31 | 30 | eqeq1d 2734 | . . . 4 ⊢ (𝑏 = 1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (1↑2)) = 𝐶)) |
32 | 31 | reubidv 3394 | . . 3 ⊢ (𝑏 = 1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶)) |
33 | oveq1 7415 | . . . . . 6 ⊢ (𝑏 = -1 → (𝑏↑2) = (-1↑2)) | |
34 | 33 | oveq2d 7424 | . . . . 5 ⊢ (𝑏 = -1 → (𝑎 + (𝑏↑2)) = (𝑎 + (-1↑2))) |
35 | 34 | eqeq1d 2734 | . . . 4 ⊢ (𝑏 = -1 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑎 + (-1↑2)) = 𝐶)) |
36 | 35 | reubidv 3394 | . . 3 ⊢ (𝑏 = -1 → (∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶)) |
37 | 32, 36 | 2nreu 4441 | . 2 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((∃!𝑎 ∈ ℂ (𝑎 + (1↑2)) = 𝐶 ∧ ∃!𝑎 ∈ ℂ (𝑎 + (-1↑2)) = 𝐶) → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)) |
38 | 6, 28, 37 | mpsyl 68 | 1 ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∃!wreu 3374 (class class class)co 7408 ℂcc 11107 1c1 11110 + caddc 11112 -cneg 11444 ℕcn 12211 2c2 12266 ↑cexp 14026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-seq 13966 df-exp 14027 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |