Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem14 | Structured version Visualization version GIF version |
Description: Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 6-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem12.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem12.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem12.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem12.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem12.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem12.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem12.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem12.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem12.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem12.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem12.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem12.a | ⊢ 𝐴 = (Base‘𝑃) |
Ref | Expression |
---|---|
hdmap14lem14 | ⊢ (𝜑 → ∃!𝑔 ∈ 𝐴 ∀𝑥 ∈ 𝑉 (𝑆‘(𝐹 · 𝑥)) = (𝑔 ∙ (𝑆‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem12.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem12.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | eqid 2738 | . . 3 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
5 | hdmap14lem12.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | dvh1dim 39101 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝑉 𝑦 ≠ (0g‘𝑈)) |
7 | hdmap14lem12.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
8 | hdmap14lem12.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
9 | hdmap14lem12.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
10 | hdmap14lem12.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | hdmap14lem12.e | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
12 | hdmap14lem12.p | . . . . 5 ⊢ 𝑃 = (Scalar‘𝐶) | |
13 | hdmap14lem12.a | . . . . 5 ⊢ 𝐴 = (Base‘𝑃) | |
14 | hdmap14lem12.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
15 | 5 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | 3simpc 1151 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) → (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈))) | |
17 | eldifsn 4675 | . . . . . 6 ⊢ (𝑦 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈))) | |
18 | 16, 17 | sylibr 237 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) → 𝑦 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
19 | hdmap14lem12.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
20 | 19 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) → 𝐹 ∈ 𝐵) |
21 | 1, 2, 3, 7, 4, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20 | hdmap14lem7 39533 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) → ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) |
22 | simpl1 1192 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) ∧ 𝑔 ∈ 𝐴) → 𝜑) | |
23 | 22, 5 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) ∧ 𝑔 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | 22, 19 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) ∧ 𝑔 ∈ 𝐴) → 𝐹 ∈ 𝐵) |
25 | 18 | adantr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) ∧ 𝑔 ∈ 𝐴) → 𝑦 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
26 | simpr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ 𝐴) | |
27 | 1, 2, 3, 7, 8, 9, 10, 11, 14, 23, 24, 12, 13, 4, 25, 26 | hdmap14lem13 39539 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) ∧ 𝑔 ∈ 𝐴) → ((𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦)) ↔ ∀𝑥 ∈ 𝑉 (𝑆‘(𝐹 · 𝑥)) = (𝑔 ∙ (𝑆‘𝑥)))) |
28 | 27 | reubidva 3291 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) → (∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦)) ↔ ∃!𝑔 ∈ 𝐴 ∀𝑥 ∈ 𝑉 (𝑆‘(𝐹 · 𝑥)) = (𝑔 ∙ (𝑆‘𝑥)))) |
29 | 21, 28 | mpbid 235 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑈)) → ∃!𝑔 ∈ 𝐴 ∀𝑥 ∈ 𝑉 (𝑆‘(𝐹 · 𝑥)) = (𝑔 ∙ (𝑆‘𝑥))) |
30 | 29 | rexlimdv3a 3196 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝑉 𝑦 ≠ (0g‘𝑈) → ∃!𝑔 ∈ 𝐴 ∀𝑥 ∈ 𝑉 (𝑆‘(𝐹 · 𝑥)) = (𝑔 ∙ (𝑆‘𝑥)))) |
31 | 6, 30 | mpd 15 | 1 ⊢ (𝜑 → ∃!𝑔 ∈ 𝐴 ∀𝑥 ∈ 𝑉 (𝑆‘(𝐹 · 𝑥)) = (𝑔 ∙ (𝑆‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∀wral 3053 ∃wrex 3054 ∃!wreu 3055 ∖ cdif 3840 {csn 4516 ‘cfv 6339 (class class class)co 7172 Basecbs 16588 Scalarcsca 16673 ·𝑠 cvsca 16674 0gc0g 16818 HLchlt 37009 LHypclh 37643 DVecHcdvh 38737 LCDualclcd 39245 HDMapchdma 39451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 ax-riotaBAD 36612 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-ot 4525 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-of 7427 df-om 7602 df-1st 7716 df-2nd 7717 df-tpos 7923 df-undef 7970 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-er 8322 df-map 8441 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-3 11782 df-4 11783 df-5 11784 df-6 11785 df-n0 11979 df-z 12065 df-uz 12327 df-fz 12984 df-struct 16590 df-ndx 16591 df-slot 16592 df-base 16594 df-sets 16595 df-ress 16596 df-plusg 16683 df-mulr 16684 df-sca 16686 df-vsca 16687 df-0g 16820 df-mre 16962 df-mrc 16963 df-acs 16965 df-proset 17656 df-poset 17674 df-plt 17686 df-lub 17702 df-glb 17703 df-join 17704 df-meet 17705 df-p0 17767 df-p1 17768 df-lat 17774 df-clat 17836 df-mgm 17970 df-sgrp 18019 df-mnd 18030 df-submnd 18075 df-grp 18224 df-minusg 18225 df-sbg 18226 df-subg 18396 df-cntz 18567 df-oppg 18594 df-lsm 18881 df-cmn 19028 df-abl 19029 df-mgp 19361 df-ur 19373 df-ring 19420 df-oppr 19497 df-dvdsr 19515 df-unit 19516 df-invr 19546 df-dvr 19557 df-drng 19625 df-lmod 19757 df-lss 19825 df-lsp 19865 df-lvec 19996 df-lsatoms 36635 df-lshyp 36636 df-lcv 36678 df-lfl 36717 df-lkr 36745 df-ldual 36783 df-oposet 36835 df-ol 36837 df-oml 36838 df-covers 36925 df-ats 36926 df-atl 36957 df-cvlat 36981 df-hlat 37010 df-llines 37157 df-lplanes 37158 df-lvols 37159 df-lines 37160 df-psubsp 37162 df-pmap 37163 df-padd 37455 df-lhyp 37647 df-laut 37648 df-ldil 37763 df-ltrn 37764 df-trl 37818 df-tgrp 38402 df-tendo 38414 df-edring 38416 df-dveca 38662 df-disoa 38688 df-dvech 38738 df-dib 38798 df-dic 38832 df-dih 38888 df-doch 39007 df-djh 39054 df-lcdual 39246 df-mapd 39284 df-hvmap 39416 df-hdmap1 39452 df-hdmap 39453 |
This theorem is referenced by: hdmap14lem15 39541 |
Copyright terms: Public domain | W3C validator |