![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem14 | Structured version Visualization version GIF version |
Description: Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 6-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem12.h | β’ π» = (LHypβπΎ) |
hdmap14lem12.u | β’ π = ((DVecHβπΎ)βπ) |
hdmap14lem12.v | β’ π = (Baseβπ) |
hdmap14lem12.t | β’ Β· = ( Β·π βπ) |
hdmap14lem12.r | β’ π = (Scalarβπ) |
hdmap14lem12.b | β’ π΅ = (Baseβπ ) |
hdmap14lem12.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmap14lem12.e | β’ β = ( Β·π βπΆ) |
hdmap14lem12.s | β’ π = ((HDMapβπΎ)βπ) |
hdmap14lem12.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmap14lem12.f | β’ (π β πΉ β π΅) |
hdmap14lem12.p | β’ π = (ScalarβπΆ) |
hdmap14lem12.a | β’ π΄ = (Baseβπ) |
Ref | Expression |
---|---|
hdmap14lem14 | β’ (π β β!π β π΄ βπ₯ β π (πβ(πΉ Β· π₯)) = (π β (πβπ₯))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | hdmap14lem12.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
3 | hdmap14lem12.v | . . 3 β’ π = (Baseβπ) | |
4 | eqid 2727 | . . 3 β’ (0gβπ) = (0gβπ) | |
5 | hdmap14lem12.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
6 | 1, 2, 3, 4, 5 | dvh1dim 40852 | . 2 β’ (π β βπ¦ β π π¦ β (0gβπ)) |
7 | hdmap14lem12.t | . . . . 5 β’ Β· = ( Β·π βπ) | |
8 | hdmap14lem12.r | . . . . 5 β’ π = (Scalarβπ) | |
9 | hdmap14lem12.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
10 | hdmap14lem12.c | . . . . 5 β’ πΆ = ((LCDualβπΎ)βπ) | |
11 | hdmap14lem12.e | . . . . 5 β’ β = ( Β·π βπΆ) | |
12 | hdmap14lem12.p | . . . . 5 β’ π = (ScalarβπΆ) | |
13 | hdmap14lem12.a | . . . . 5 β’ π΄ = (Baseβπ) | |
14 | hdmap14lem12.s | . . . . 5 β’ π = ((HDMapβπΎ)βπ) | |
15 | 5 | 3ad2ant1 1131 | . . . . 5 β’ ((π β§ π¦ β π β§ π¦ β (0gβπ)) β (πΎ β HL β§ π β π»)) |
16 | 3simpc 1148 | . . . . . 6 β’ ((π β§ π¦ β π β§ π¦ β (0gβπ)) β (π¦ β π β§ π¦ β (0gβπ))) | |
17 | eldifsn 4786 | . . . . . 6 β’ (π¦ β (π β {(0gβπ)}) β (π¦ β π β§ π¦ β (0gβπ))) | |
18 | 16, 17 | sylibr 233 | . . . . 5 β’ ((π β§ π¦ β π β§ π¦ β (0gβπ)) β π¦ β (π β {(0gβπ)})) |
19 | hdmap14lem12.f | . . . . . 6 β’ (π β πΉ β π΅) | |
20 | 19 | 3ad2ant1 1131 | . . . . 5 β’ ((π β§ π¦ β π β§ π¦ β (0gβπ)) β πΉ β π΅) |
21 | 1, 2, 3, 7, 4, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20 | hdmap14lem7 41284 | . . . 4 β’ ((π β§ π¦ β π β§ π¦ β (0gβπ)) β β!π β π΄ (πβ(πΉ Β· π¦)) = (π β (πβπ¦))) |
22 | simpl1 1189 | . . . . . . 7 β’ (((π β§ π¦ β π β§ π¦ β (0gβπ)) β§ π β π΄) β π) | |
23 | 22, 5 | syl 17 | . . . . . 6 β’ (((π β§ π¦ β π β§ π¦ β (0gβπ)) β§ π β π΄) β (πΎ β HL β§ π β π»)) |
24 | 22, 19 | syl 17 | . . . . . 6 β’ (((π β§ π¦ β π β§ π¦ β (0gβπ)) β§ π β π΄) β πΉ β π΅) |
25 | 18 | adantr 480 | . . . . . 6 β’ (((π β§ π¦ β π β§ π¦ β (0gβπ)) β§ π β π΄) β π¦ β (π β {(0gβπ)})) |
26 | simpr 484 | . . . . . 6 β’ (((π β§ π¦ β π β§ π¦ β (0gβπ)) β§ π β π΄) β π β π΄) | |
27 | 1, 2, 3, 7, 8, 9, 10, 11, 14, 23, 24, 12, 13, 4, 25, 26 | hdmap14lem13 41290 | . . . . 5 β’ (((π β§ π¦ β π β§ π¦ β (0gβπ)) β§ π β π΄) β ((πβ(πΉ Β· π¦)) = (π β (πβπ¦)) β βπ₯ β π (πβ(πΉ Β· π₯)) = (π β (πβπ₯)))) |
28 | 27 | reubidva 3387 | . . . 4 β’ ((π β§ π¦ β π β§ π¦ β (0gβπ)) β (β!π β π΄ (πβ(πΉ Β· π¦)) = (π β (πβπ¦)) β β!π β π΄ βπ₯ β π (πβ(πΉ Β· π₯)) = (π β (πβπ₯)))) |
29 | 21, 28 | mpbid 231 | . . 3 β’ ((π β§ π¦ β π β§ π¦ β (0gβπ)) β β!π β π΄ βπ₯ β π (πβ(πΉ Β· π₯)) = (π β (πβπ₯))) |
30 | 29 | rexlimdv3a 3154 | . 2 β’ (π β (βπ¦ β π π¦ β (0gβπ) β β!π β π΄ βπ₯ β π (πβ(πΉ Β· π₯)) = (π β (πβπ₯)))) |
31 | 6, 30 | mpd 15 | 1 β’ (π β β!π β π΄ βπ₯ β π (πβ(πΉ Β· π₯)) = (π β (πβπ₯))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 β wne 2935 βwral 3056 βwrex 3065 β!wreu 3369 β cdif 3941 {csn 4624 βcfv 6542 (class class class)co 7414 Basecbs 17171 Scalarcsca 17227 Β·π cvsca 17228 0gc0g 17412 HLchlt 38759 LHypclh 39394 DVecHcdvh 40488 LCDualclcd 40996 HDMapchdma 41202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-riotaBAD 38362 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-undef 8272 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-sca 17240 df-vsca 17241 df-0g 17414 df-mre 17557 df-mrc 17558 df-acs 17560 df-proset 18278 df-poset 18296 df-plt 18313 df-lub 18329 df-glb 18330 df-join 18331 df-meet 18332 df-p0 18408 df-p1 18409 df-lat 18415 df-clat 18482 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-grp 18884 df-minusg 18885 df-sbg 18886 df-subg 19069 df-cntz 19259 df-oppg 19288 df-lsm 19582 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-oppr 20262 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-drng 20615 df-lmod 20734 df-lss 20805 df-lsp 20845 df-lvec 20977 df-lsatoms 38385 df-lshyp 38386 df-lcv 38428 df-lfl 38467 df-lkr 38495 df-ldual 38533 df-oposet 38585 df-ol 38587 df-oml 38588 df-covers 38675 df-ats 38676 df-atl 38707 df-cvlat 38731 df-hlat 38760 df-llines 38908 df-lplanes 38909 df-lvols 38910 df-lines 38911 df-psubsp 38913 df-pmap 38914 df-padd 39206 df-lhyp 39398 df-laut 39399 df-ldil 39514 df-ltrn 39515 df-trl 39569 df-tgrp 40153 df-tendo 40165 df-edring 40167 df-dveca 40413 df-disoa 40439 df-dvech 40489 df-dib 40549 df-dic 40583 df-dih 40639 df-doch 40758 df-djh 40805 df-lcdual 40997 df-mapd 41035 df-hvmap 41167 df-hdmap1 41203 df-hdmap 41204 |
This theorem is referenced by: hdmap14lem15 41292 |
Copyright terms: Public domain | W3C validator |