![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsqrexnreu | Structured version Visualization version GIF version |
Description: For each complex number,
there exists a complex number to which the
square of more than one (or no) other complex numbers can be added to
result in the given complex number.
Remark: This theorem, together with addsq2reu 25702, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 25702). For more details see comment for addsqnreup 25705. (Contributed by AV, 20-Jun-2023.) |
Ref | Expression |
---|---|
addsqrexnreu | ⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cnm 10806 | . 2 ⊢ (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ) | |
2 | oveq1 7030 | . . . . . 6 ⊢ (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2))) | |
3 | 2 | eqeq1d 2799 | . . . . 5 ⊢ (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
4 | 3 | reubidv 3351 | . . . 4 ⊢ (𝑎 = (𝐶 − 1) → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
5 | 4 | notbid 319 | . . 3 ⊢ (𝑎 = (𝐶 − 1) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
6 | 5 | adantl 482 | . 2 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 = (𝐶 − 1)) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
7 | ax-1cn 10448 | . . . . 5 ⊢ 1 ∈ ℂ | |
8 | neg1cn 11605 | . . . . 5 ⊢ -1 ∈ ℂ | |
9 | 1nn 11503 | . . . . . 6 ⊢ 1 ∈ ℕ | |
10 | nnneneg 11526 | . . . . . 6 ⊢ (1 ∈ ℕ → 1 ≠ -1) | |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ 1 ≠ -1 |
12 | 7, 8, 11 | 3pm3.2i 1332 | . . . 4 ⊢ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) |
13 | sq1 13412 | . . . . . 6 ⊢ (1↑2) = 1 | |
14 | 13 | eqcomi 2806 | . . . . 5 ⊢ 1 = (1↑2) |
15 | neg1sqe1 13413 | . . . . . 6 ⊢ (-1↑2) = 1 | |
16 | 15 | eqcomi 2806 | . . . . 5 ⊢ 1 = (-1↑2) |
17 | 14, 16 | pm3.2i 471 | . . . 4 ⊢ (1 = (1↑2) ∧ 1 = (-1↑2)) |
18 | oveq1 7030 | . . . . . 6 ⊢ (𝑏 = 1 → (𝑏↑2) = (1↑2)) | |
19 | 18 | eqeq2d 2807 | . . . . 5 ⊢ (𝑏 = 1 → (1 = (𝑏↑2) ↔ 1 = (1↑2))) |
20 | oveq1 7030 | . . . . . 6 ⊢ (𝑏 = -1 → (𝑏↑2) = (-1↑2)) | |
21 | 20 | eqeq2d 2807 | . . . . 5 ⊢ (𝑏 = -1 → (1 = (𝑏↑2) ↔ 1 = (-1↑2))) |
22 | 19, 21 | 2nreu 4313 | . . . 4 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((1 = (1↑2) ∧ 1 = (-1↑2)) → ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2))) |
23 | 12, 17, 22 | mp2 9 | . . 3 ⊢ ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2) |
24 | simpl 483 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ) | |
25 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 1) ∈ ℂ) |
26 | sqcl 13338 | . . . . . . 7 ⊢ (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ) | |
27 | 26 | adantl 482 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ) |
28 | 24, 25, 27 | subaddd 10869 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
29 | id 22 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → 𝐶 ∈ ℂ) | |
30 | 1cnd 10489 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → 1 ∈ ℂ) | |
31 | 29, 30 | nncand 10856 | . . . . . . 7 ⊢ (𝐶 ∈ ℂ → (𝐶 − (𝐶 − 1)) = 1) |
32 | 31 | adantr 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − (𝐶 − 1)) = 1) |
33 | 32 | eqeq1d 2799 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ 1 = (𝑏↑2))) |
34 | 28, 33 | bitr3d 282 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ 1 = (𝑏↑2))) |
35 | 34 | reubidva 3349 | . . 3 ⊢ (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2))) |
36 | 23, 35 | mtbiri 328 | . 2 ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶) |
37 | 1, 6, 36 | rspcedvd 3568 | 1 ⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ≠ wne 2986 ∃wrex 3108 ∃!wreu 3109 (class class class)co 7023 ℂcc 10388 1c1 10391 + caddc 10393 − cmin 10723 -cneg 10724 ℕcn 11492 2c2 11546 ↑cexp 13283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-n0 11752 df-z 11836 df-uz 12098 df-seq 13224 df-exp 13284 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |