MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqrexnreu Structured version   Visualization version   GIF version

Theorem addsqrexnreu 27360
Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.

Remark: This theorem, together with addsq2reu 27358, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 27358). For more details see comment for addsqnreup 27361. (Contributed by AV, 20-Jun-2023.)

Assertion
Ref Expression
addsqrexnreu (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsqrexnreu
StepHypRef Expression
1 peano2cnm 11495 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 oveq1 7397 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
32eqeq1d 2732 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
43reubidv 3374 . . . 4 (𝑎 = (𝐶 − 1) → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
54notbid 318 . . 3 (𝑎 = (𝐶 − 1) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
65adantl 481 . 2 ((𝐶 ∈ ℂ ∧ 𝑎 = (𝐶 − 1)) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
7 ax-1cn 11133 . . . . 5 1 ∈ ℂ
8 neg1cn 12178 . . . . 5 -1 ∈ ℂ
9 1nn 12204 . . . . . 6 1 ∈ ℕ
10 nnneneg 12228 . . . . . 6 (1 ∈ ℕ → 1 ≠ -1)
119, 10ax-mp 5 . . . . 5 1 ≠ -1
127, 8, 113pm3.2i 1340 . . . 4 (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1)
13 sq1 14167 . . . . . 6 (1↑2) = 1
1413eqcomi 2739 . . . . 5 1 = (1↑2)
15 neg1sqe1 14168 . . . . . 6 (-1↑2) = 1
1615eqcomi 2739 . . . . 5 1 = (-1↑2)
1714, 16pm3.2i 470 . . . 4 (1 = (1↑2) ∧ 1 = (-1↑2))
18 oveq1 7397 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1918eqeq2d 2741 . . . . 5 (𝑏 = 1 → (1 = (𝑏↑2) ↔ 1 = (1↑2)))
20 oveq1 7397 . . . . . 6 (𝑏 = -1 → (𝑏↑2) = (-1↑2))
2120eqeq2d 2741 . . . . 5 (𝑏 = -1 → (1 = (𝑏↑2) ↔ 1 = (-1↑2)))
2219, 212nreu 4410 . . . 4 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((1 = (1↑2) ∧ 1 = (-1↑2)) → ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
2312, 17, 22mp2 9 . . 3 ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)
24 simpl 482 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
251adantr 480 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 1) ∈ ℂ)
26 sqcl 14090 . . . . . . 7 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
2726adantl 481 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
2824, 25, 27subaddd 11558 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
29 id 22 . . . . . . . 8 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
30 1cnd 11176 . . . . . . . 8 (𝐶 ∈ ℂ → 1 ∈ ℂ)
3129, 30nncand 11545 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 − (𝐶 − 1)) = 1)
3231adantr 480 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − (𝐶 − 1)) = 1)
3332eqeq1d 2732 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ 1 = (𝑏↑2)))
3428, 33bitr3d 281 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ 1 = (𝑏↑2)))
3534reubidva 3372 . . 3 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
3623, 35mtbiri 327 . 2 (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
371, 6, 36rspcedvd 3593 1 (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  ∃!wreu 3354  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078  cmin 11412  -cneg 11413  cn 12193  2c2 12248  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-exp 14034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator