MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqrexnreu Structured version   Visualization version   GIF version

Theorem addsqrexnreu 27369
Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.

Remark: This theorem, together with addsq2reu 27367, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 27367). For more details see comment for addsqnreup 27370. (Contributed by AV, 20-Jun-2023.)

Assertion
Ref Expression
addsqrexnreu (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsqrexnreu
StepHypRef Expression
1 peano2cnm 11448 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 oveq1 7360 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
32eqeq1d 2731 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
43reubidv 3363 . . . 4 (𝑎 = (𝐶 − 1) → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
54notbid 318 . . 3 (𝑎 = (𝐶 − 1) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
65adantl 481 . 2 ((𝐶 ∈ ℂ ∧ 𝑎 = (𝐶 − 1)) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
7 ax-1cn 11086 . . . . 5 1 ∈ ℂ
8 neg1cn 12131 . . . . 5 -1 ∈ ℂ
9 1nn 12157 . . . . . 6 1 ∈ ℕ
10 nnneneg 12181 . . . . . 6 (1 ∈ ℕ → 1 ≠ -1)
119, 10ax-mp 5 . . . . 5 1 ≠ -1
127, 8, 113pm3.2i 1340 . . . 4 (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1)
13 sq1 14120 . . . . . 6 (1↑2) = 1
1413eqcomi 2738 . . . . 5 1 = (1↑2)
15 neg1sqe1 14121 . . . . . 6 (-1↑2) = 1
1615eqcomi 2738 . . . . 5 1 = (-1↑2)
1714, 16pm3.2i 470 . . . 4 (1 = (1↑2) ∧ 1 = (-1↑2))
18 oveq1 7360 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1918eqeq2d 2740 . . . . 5 (𝑏 = 1 → (1 = (𝑏↑2) ↔ 1 = (1↑2)))
20 oveq1 7360 . . . . . 6 (𝑏 = -1 → (𝑏↑2) = (-1↑2))
2120eqeq2d 2740 . . . . 5 (𝑏 = -1 → (1 = (𝑏↑2) ↔ 1 = (-1↑2)))
2219, 212nreu 4397 . . . 4 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((1 = (1↑2) ∧ 1 = (-1↑2)) → ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
2312, 17, 22mp2 9 . . 3 ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)
24 simpl 482 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
251adantr 480 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 1) ∈ ℂ)
26 sqcl 14043 . . . . . . 7 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
2726adantl 481 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
2824, 25, 27subaddd 11511 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
29 id 22 . . . . . . . 8 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
30 1cnd 11129 . . . . . . . 8 (𝐶 ∈ ℂ → 1 ∈ ℂ)
3129, 30nncand 11498 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 − (𝐶 − 1)) = 1)
3231adantr 480 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − (𝐶 − 1)) = 1)
3332eqeq1d 2731 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ 1 = (𝑏↑2)))
3428, 33bitr3d 281 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ 1 = (𝑏↑2)))
3534reubidva 3361 . . 3 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
3623, 35mtbiri 327 . 2 (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
371, 6, 36rspcedvd 3581 1 (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ∃!wreu 3343  (class class class)co 7353  cc 11026  1c1 11029   + caddc 11031  cmin 11365  -cneg 11366  cn 12146  2c2 12201  cexp 13986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-seq 13927  df-exp 13987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator