MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqrexnreu Structured version   Visualization version   GIF version

Theorem addsqrexnreu 27388
Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.

Remark: This theorem, together with addsq2reu 27386, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 27386). For more details see comment for addsqnreup 27389. (Contributed by AV, 20-Jun-2023.)

Assertion
Ref Expression
addsqrexnreu (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsqrexnreu
StepHypRef Expression
1 peano2cnm 11551 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 oveq1 7420 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
32eqeq1d 2727 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
43reubidv 3382 . . . 4 (𝑎 = (𝐶 − 1) → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
54notbid 317 . . 3 (𝑎 = (𝐶 − 1) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
65adantl 480 . 2 ((𝐶 ∈ ℂ ∧ 𝑎 = (𝐶 − 1)) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
7 ax-1cn 11191 . . . . 5 1 ∈ ℂ
8 neg1cn 12351 . . . . 5 -1 ∈ ℂ
9 1nn 12248 . . . . . 6 1 ∈ ℕ
10 nnneneg 12272 . . . . . 6 (1 ∈ ℕ → 1 ≠ -1)
119, 10ax-mp 5 . . . . 5 1 ≠ -1
127, 8, 113pm3.2i 1336 . . . 4 (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1)
13 sq1 14185 . . . . . 6 (1↑2) = 1
1413eqcomi 2734 . . . . 5 1 = (1↑2)
15 neg1sqe1 14186 . . . . . 6 (-1↑2) = 1
1615eqcomi 2734 . . . . 5 1 = (-1↑2)
1714, 16pm3.2i 469 . . . 4 (1 = (1↑2) ∧ 1 = (-1↑2))
18 oveq1 7420 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1918eqeq2d 2736 . . . . 5 (𝑏 = 1 → (1 = (𝑏↑2) ↔ 1 = (1↑2)))
20 oveq1 7420 . . . . . 6 (𝑏 = -1 → (𝑏↑2) = (-1↑2))
2120eqeq2d 2736 . . . . 5 (𝑏 = -1 → (1 = (𝑏↑2) ↔ 1 = (-1↑2)))
2219, 212nreu 4438 . . . 4 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((1 = (1↑2) ∧ 1 = (-1↑2)) → ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
2312, 17, 22mp2 9 . . 3 ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)
24 simpl 481 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
251adantr 479 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 1) ∈ ℂ)
26 sqcl 14109 . . . . . . 7 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
2726adantl 480 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
2824, 25, 27subaddd 11614 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
29 id 22 . . . . . . . 8 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
30 1cnd 11234 . . . . . . . 8 (𝐶 ∈ ℂ → 1 ∈ ℂ)
3129, 30nncand 11601 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 − (𝐶 − 1)) = 1)
3231adantr 479 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − (𝐶 − 1)) = 1)
3332eqeq1d 2727 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ 1 = (𝑏↑2)))
3428, 33bitr3d 280 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ 1 = (𝑏↑2)))
3534reubidva 3380 . . 3 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
3623, 35mtbiri 326 . 2 (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
371, 6, 36rspcedvd 3605 1 (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  wrex 3060  ∃!wreu 3362  (class class class)co 7413  cc 11131  1c1 11134   + caddc 11136  cmin 11469  -cneg 11470  cn 12237  2c2 12292  cexp 14053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-n0 12498  df-z 12584  df-uz 12848  df-seq 13994  df-exp 14054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator