MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqrexnreu Structured version   Visualization version   GIF version

Theorem addsqrexnreu 27383
Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.

Remark: This theorem, together with addsq2reu 27381, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 27381). For more details see comment for addsqnreup 27384. (Contributed by AV, 20-Jun-2023.)

Assertion
Ref Expression
addsqrexnreu (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsqrexnreu
StepHypRef Expression
1 peano2cnm 11436 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 oveq1 7361 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
32eqeq1d 2735 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
43reubidv 3363 . . . 4 (𝑎 = (𝐶 − 1) → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
54notbid 318 . . 3 (𝑎 = (𝐶 − 1) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
65adantl 481 . 2 ((𝐶 ∈ ℂ ∧ 𝑎 = (𝐶 − 1)) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
7 ax-1cn 11073 . . . . 5 1 ∈ ℂ
8 neg1cn 12119 . . . . 5 -1 ∈ ℂ
9 1nn 12145 . . . . . 6 1 ∈ ℕ
10 nnneneg 12169 . . . . . 6 (1 ∈ ℕ → 1 ≠ -1)
119, 10ax-mp 5 . . . . 5 1 ≠ -1
127, 8, 113pm3.2i 1340 . . . 4 (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1)
13 sq1 14106 . . . . . 6 (1↑2) = 1
1413eqcomi 2742 . . . . 5 1 = (1↑2)
15 neg1sqe1 14107 . . . . . 6 (-1↑2) = 1
1615eqcomi 2742 . . . . 5 1 = (-1↑2)
1714, 16pm3.2i 470 . . . 4 (1 = (1↑2) ∧ 1 = (-1↑2))
18 oveq1 7361 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1918eqeq2d 2744 . . . . 5 (𝑏 = 1 → (1 = (𝑏↑2) ↔ 1 = (1↑2)))
20 oveq1 7361 . . . . . 6 (𝑏 = -1 → (𝑏↑2) = (-1↑2))
2120eqeq2d 2744 . . . . 5 (𝑏 = -1 → (1 = (𝑏↑2) ↔ 1 = (-1↑2)))
2219, 212nreu 4393 . . . 4 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((1 = (1↑2) ∧ 1 = (-1↑2)) → ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
2312, 17, 22mp2 9 . . 3 ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)
24 simpl 482 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
251adantr 480 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 1) ∈ ℂ)
26 sqcl 14029 . . . . . . 7 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
2726adantl 481 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
2824, 25, 27subaddd 11499 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
29 id 22 . . . . . . . 8 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
30 1cnd 11116 . . . . . . . 8 (𝐶 ∈ ℂ → 1 ∈ ℂ)
3129, 30nncand 11486 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 − (𝐶 − 1)) = 1)
3231adantr 480 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − (𝐶 − 1)) = 1)
3332eqeq1d 2735 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ 1 = (𝑏↑2)))
3428, 33bitr3d 281 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ 1 = (𝑏↑2)))
3534reubidva 3361 . . 3 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
3623, 35mtbiri 327 . 2 (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
371, 6, 36rspcedvd 3575 1 (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  ∃!wreu 3345  (class class class)co 7354  cc 11013  1c1 11016   + caddc 11018  cmin 11353  -cneg 11354  cn 12134  2c2 12189  cexp 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-seq 13913  df-exp 13973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator