Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addsqrexnreu | Structured version Visualization version GIF version |
Description: For each complex number,
there exists a complex number to which the
square of more than one (or no) other complex numbers can be added to
result in the given complex number.
Remark: This theorem, together with addsq2reu 26321, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 26321). For more details see comment for addsqnreup 26324. (Contributed by AV, 20-Jun-2023.) |
Ref | Expression |
---|---|
addsqrexnreu | ⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cnm 11144 | . 2 ⊢ (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ) | |
2 | oveq1 7220 | . . . . . 6 ⊢ (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2))) | |
3 | 2 | eqeq1d 2739 | . . . . 5 ⊢ (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
4 | 3 | reubidv 3301 | . . . 4 ⊢ (𝑎 = (𝐶 − 1) → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
5 | 4 | notbid 321 | . . 3 ⊢ (𝑎 = (𝐶 − 1) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
6 | 5 | adantl 485 | . 2 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 = (𝐶 − 1)) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
7 | ax-1cn 10787 | . . . . 5 ⊢ 1 ∈ ℂ | |
8 | neg1cn 11944 | . . . . 5 ⊢ -1 ∈ ℂ | |
9 | 1nn 11841 | . . . . . 6 ⊢ 1 ∈ ℕ | |
10 | nnneneg 11865 | . . . . . 6 ⊢ (1 ∈ ℕ → 1 ≠ -1) | |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ 1 ≠ -1 |
12 | 7, 8, 11 | 3pm3.2i 1341 | . . . 4 ⊢ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) |
13 | sq1 13764 | . . . . . 6 ⊢ (1↑2) = 1 | |
14 | 13 | eqcomi 2746 | . . . . 5 ⊢ 1 = (1↑2) |
15 | neg1sqe1 13765 | . . . . . 6 ⊢ (-1↑2) = 1 | |
16 | 15 | eqcomi 2746 | . . . . 5 ⊢ 1 = (-1↑2) |
17 | 14, 16 | pm3.2i 474 | . . . 4 ⊢ (1 = (1↑2) ∧ 1 = (-1↑2)) |
18 | oveq1 7220 | . . . . . 6 ⊢ (𝑏 = 1 → (𝑏↑2) = (1↑2)) | |
19 | 18 | eqeq2d 2748 | . . . . 5 ⊢ (𝑏 = 1 → (1 = (𝑏↑2) ↔ 1 = (1↑2))) |
20 | oveq1 7220 | . . . . . 6 ⊢ (𝑏 = -1 → (𝑏↑2) = (-1↑2)) | |
21 | 20 | eqeq2d 2748 | . . . . 5 ⊢ (𝑏 = -1 → (1 = (𝑏↑2) ↔ 1 = (-1↑2))) |
22 | 19, 21 | 2nreu 4356 | . . . 4 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((1 = (1↑2) ∧ 1 = (-1↑2)) → ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2))) |
23 | 12, 17, 22 | mp2 9 | . . 3 ⊢ ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2) |
24 | simpl 486 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ) | |
25 | 1 | adantr 484 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 1) ∈ ℂ) |
26 | sqcl 13690 | . . . . . . 7 ⊢ (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ) | |
27 | 26 | adantl 485 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ) |
28 | 24, 25, 27 | subaddd 11207 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
29 | id 22 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → 𝐶 ∈ ℂ) | |
30 | 1cnd 10828 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → 1 ∈ ℂ) | |
31 | 29, 30 | nncand 11194 | . . . . . . 7 ⊢ (𝐶 ∈ ℂ → (𝐶 − (𝐶 − 1)) = 1) |
32 | 31 | adantr 484 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − (𝐶 − 1)) = 1) |
33 | 32 | eqeq1d 2739 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ 1 = (𝑏↑2))) |
34 | 28, 33 | bitr3d 284 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ 1 = (𝑏↑2))) |
35 | 34 | reubidva 3300 | . . 3 ⊢ (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2))) |
36 | 23, 35 | mtbiri 330 | . 2 ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶) |
37 | 1, 6, 36 | rspcedvd 3540 | 1 ⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∃wrex 3062 ∃!wreu 3063 (class class class)co 7213 ℂcc 10727 1c1 10730 + caddc 10732 − cmin 11062 -cneg 11063 ℕcn 11830 2c2 11885 ↑cexp 13635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-seq 13575 df-exp 13636 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |