| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsqrexnreu | Structured version Visualization version GIF version | ||
| Description: For each complex number,
there exists a complex number to which the
square of more than one (or no) other complex numbers can be added to
result in the given complex number.
Remark: This theorem, together with addsq2reu 27403, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 27403). For more details see comment for addsqnreup 27406. (Contributed by AV, 20-Jun-2023.) |
| Ref | Expression |
|---|---|
| addsqrexnreu | ⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2cnm 11549 | . 2 ⊢ (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ) | |
| 2 | oveq1 7412 | . . . . . 6 ⊢ (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2))) | |
| 3 | 2 | eqeq1d 2737 | . . . . 5 ⊢ (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
| 4 | 3 | reubidv 3377 | . . . 4 ⊢ (𝑎 = (𝐶 − 1) → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
| 5 | 4 | notbid 318 | . . 3 ⊢ (𝑎 = (𝐶 − 1) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 = (𝐶 − 1)) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
| 7 | ax-1cn 11187 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 8 | neg1cn 12354 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 9 | 1nn 12251 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 10 | nnneneg 12275 | . . . . . 6 ⊢ (1 ∈ ℕ → 1 ≠ -1) | |
| 11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ 1 ≠ -1 |
| 12 | 7, 8, 11 | 3pm3.2i 1340 | . . . 4 ⊢ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) |
| 13 | sq1 14213 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 14 | 13 | eqcomi 2744 | . . . . 5 ⊢ 1 = (1↑2) |
| 15 | neg1sqe1 14214 | . . . . . 6 ⊢ (-1↑2) = 1 | |
| 16 | 15 | eqcomi 2744 | . . . . 5 ⊢ 1 = (-1↑2) |
| 17 | 14, 16 | pm3.2i 470 | . . . 4 ⊢ (1 = (1↑2) ∧ 1 = (-1↑2)) |
| 18 | oveq1 7412 | . . . . . 6 ⊢ (𝑏 = 1 → (𝑏↑2) = (1↑2)) | |
| 19 | 18 | eqeq2d 2746 | . . . . 5 ⊢ (𝑏 = 1 → (1 = (𝑏↑2) ↔ 1 = (1↑2))) |
| 20 | oveq1 7412 | . . . . . 6 ⊢ (𝑏 = -1 → (𝑏↑2) = (-1↑2)) | |
| 21 | 20 | eqeq2d 2746 | . . . . 5 ⊢ (𝑏 = -1 → (1 = (𝑏↑2) ↔ 1 = (-1↑2))) |
| 22 | 19, 21 | 2nreu 4419 | . . . 4 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((1 = (1↑2) ∧ 1 = (-1↑2)) → ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2))) |
| 23 | 12, 17, 22 | mp2 9 | . . 3 ⊢ ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2) |
| 24 | simpl 482 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ) | |
| 25 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 1) ∈ ℂ) |
| 26 | sqcl 14136 | . . . . . . 7 ⊢ (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ) | |
| 27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ) |
| 28 | 24, 25, 27 | subaddd 11612 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
| 29 | id 22 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → 𝐶 ∈ ℂ) | |
| 30 | 1cnd 11230 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → 1 ∈ ℂ) | |
| 31 | 29, 30 | nncand 11599 | . . . . . . 7 ⊢ (𝐶 ∈ ℂ → (𝐶 − (𝐶 − 1)) = 1) |
| 32 | 31 | adantr 480 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − (𝐶 − 1)) = 1) |
| 33 | 32 | eqeq1d 2737 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ 1 = (𝑏↑2))) |
| 34 | 28, 33 | bitr3d 281 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ 1 = (𝑏↑2))) |
| 35 | 34 | reubidva 3375 | . . 3 ⊢ (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2))) |
| 36 | 23, 35 | mtbiri 327 | . 2 ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶) |
| 37 | 1, 6, 36 | rspcedvd 3603 | 1 ⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ∃!wreu 3357 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 − cmin 11466 -cneg 11467 ℕcn 12240 2c2 12295 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |