MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqrexnreu Structured version   Visualization version   GIF version

Theorem addsqrexnreu 26788
Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.

Remark: This theorem, together with addsq2reu 26786, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 26786). For more details see comment for addsqnreup 26789. (Contributed by AV, 20-Jun-2023.)

Assertion
Ref Expression
addsqrexnreu (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsqrexnreu
StepHypRef Expression
1 peano2cnm 11466 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 oveq1 7363 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
32eqeq1d 2738 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
43reubidv 3371 . . . 4 (𝑎 = (𝐶 − 1) → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
54notbid 317 . . 3 (𝑎 = (𝐶 − 1) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
65adantl 482 . 2 ((𝐶 ∈ ℂ ∧ 𝑎 = (𝐶 − 1)) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
7 ax-1cn 11108 . . . . 5 1 ∈ ℂ
8 neg1cn 12266 . . . . 5 -1 ∈ ℂ
9 1nn 12163 . . . . . 6 1 ∈ ℕ
10 nnneneg 12187 . . . . . 6 (1 ∈ ℕ → 1 ≠ -1)
119, 10ax-mp 5 . . . . 5 1 ≠ -1
127, 8, 113pm3.2i 1339 . . . 4 (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1)
13 sq1 14098 . . . . . 6 (1↑2) = 1
1413eqcomi 2745 . . . . 5 1 = (1↑2)
15 neg1sqe1 14099 . . . . . 6 (-1↑2) = 1
1615eqcomi 2745 . . . . 5 1 = (-1↑2)
1714, 16pm3.2i 471 . . . 4 (1 = (1↑2) ∧ 1 = (-1↑2))
18 oveq1 7363 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1918eqeq2d 2747 . . . . 5 (𝑏 = 1 → (1 = (𝑏↑2) ↔ 1 = (1↑2)))
20 oveq1 7363 . . . . . 6 (𝑏 = -1 → (𝑏↑2) = (-1↑2))
2120eqeq2d 2747 . . . . 5 (𝑏 = -1 → (1 = (𝑏↑2) ↔ 1 = (-1↑2)))
2219, 212nreu 4401 . . . 4 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((1 = (1↑2) ∧ 1 = (-1↑2)) → ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
2312, 17, 22mp2 9 . . 3 ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)
24 simpl 483 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
251adantr 481 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 1) ∈ ℂ)
26 sqcl 14022 . . . . . . 7 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
2726adantl 482 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
2824, 25, 27subaddd 11529 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
29 id 22 . . . . . . . 8 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
30 1cnd 11149 . . . . . . . 8 (𝐶 ∈ ℂ → 1 ∈ ℂ)
3129, 30nncand 11516 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 − (𝐶 − 1)) = 1)
3231adantr 481 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − (𝐶 − 1)) = 1)
3332eqeq1d 2738 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ 1 = (𝑏↑2)))
3428, 33bitr3d 280 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ 1 = (𝑏↑2)))
3534reubidva 3369 . . 3 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2)))
3623, 35mtbiri 326 . 2 (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
371, 6, 36rspcedvd 3583 1 (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  ∃!wreu 3351  (class class class)co 7356  cc 11048  1c1 11051   + caddc 11053  cmin 11384  -cneg 11385  cn 12152  2c2 12207  cexp 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-om 7802  df-2nd 7921  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-er 8647  df-en 8883  df-dom 8884  df-sdom 8885  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-div 11812  df-nn 12153  df-2 12215  df-n0 12413  df-z 12499  df-uz 12763  df-seq 13906  df-exp 13967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator