Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addsqrexnreu | Structured version Visualization version GIF version |
Description: For each complex number,
there exists a complex number to which the
square of more than one (or no) other complex numbers can be added to
result in the given complex number.
Remark: This theorem, together with addsq2reu 26493, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 26493). For more details see comment for addsqnreup 26496. (Contributed by AV, 20-Jun-2023.) |
Ref | Expression |
---|---|
addsqrexnreu | ⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cnm 11217 | . 2 ⊢ (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ) | |
2 | oveq1 7262 | . . . . . 6 ⊢ (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2))) | |
3 | 2 | eqeq1d 2740 | . . . . 5 ⊢ (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
4 | 3 | reubidv 3315 | . . . 4 ⊢ (𝑎 = (𝐶 − 1) → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
5 | 4 | notbid 317 | . . 3 ⊢ (𝑎 = (𝐶 − 1) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝐶 ∈ ℂ ∧ 𝑎 = (𝐶 − 1)) → (¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
7 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
8 | neg1cn 12017 | . . . . 5 ⊢ -1 ∈ ℂ | |
9 | 1nn 11914 | . . . . . 6 ⊢ 1 ∈ ℕ | |
10 | nnneneg 11938 | . . . . . 6 ⊢ (1 ∈ ℕ → 1 ≠ -1) | |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ 1 ≠ -1 |
12 | 7, 8, 11 | 3pm3.2i 1337 | . . . 4 ⊢ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) |
13 | sq1 13840 | . . . . . 6 ⊢ (1↑2) = 1 | |
14 | 13 | eqcomi 2747 | . . . . 5 ⊢ 1 = (1↑2) |
15 | neg1sqe1 13841 | . . . . . 6 ⊢ (-1↑2) = 1 | |
16 | 15 | eqcomi 2747 | . . . . 5 ⊢ 1 = (-1↑2) |
17 | 14, 16 | pm3.2i 470 | . . . 4 ⊢ (1 = (1↑2) ∧ 1 = (-1↑2)) |
18 | oveq1 7262 | . . . . . 6 ⊢ (𝑏 = 1 → (𝑏↑2) = (1↑2)) | |
19 | 18 | eqeq2d 2749 | . . . . 5 ⊢ (𝑏 = 1 → (1 = (𝑏↑2) ↔ 1 = (1↑2))) |
20 | oveq1 7262 | . . . . . 6 ⊢ (𝑏 = -1 → (𝑏↑2) = (-1↑2)) | |
21 | 20 | eqeq2d 2749 | . . . . 5 ⊢ (𝑏 = -1 → (1 = (𝑏↑2) ↔ 1 = (-1↑2))) |
22 | 19, 21 | 2nreu 4372 | . . . 4 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ≠ -1) → ((1 = (1↑2) ∧ 1 = (-1↑2)) → ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2))) |
23 | 12, 17, 22 | mp2 9 | . . 3 ⊢ ¬ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2) |
24 | simpl 482 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ) | |
25 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 1) ∈ ℂ) |
26 | sqcl 13766 | . . . . . . 7 ⊢ (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ) | |
27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ) |
28 | 24, 25, 27 | subaddd 11280 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)) |
29 | id 22 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → 𝐶 ∈ ℂ) | |
30 | 1cnd 10901 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → 1 ∈ ℂ) | |
31 | 29, 30 | nncand 11267 | . . . . . . 7 ⊢ (𝐶 ∈ ℂ → (𝐶 − (𝐶 − 1)) = 1) |
32 | 31 | adantr 480 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − (𝐶 − 1)) = 1) |
33 | 32 | eqeq1d 2740 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − (𝐶 − 1)) = (𝑏↑2) ↔ 1 = (𝑏↑2))) |
34 | 28, 33 | bitr3d 280 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ 1 = (𝑏↑2))) |
35 | 34 | reubidva 3314 | . . 3 ⊢ (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 1 = (𝑏↑2))) |
36 | 23, 35 | mtbiri 326 | . 2 ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶) |
37 | 1, 6, 36 | rspcedvd 3555 | 1 ⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ∃!wreu 3065 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 − cmin 11135 -cneg 11136 ℕcn 11903 2c2 11958 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |