![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm1exi | Structured version Visualization version GIF version |
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm1ex.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
norm1exi | ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3001 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
2 | 1 | cbvrexvw 3236 | . 2 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
3 | norm1ex.1 | . . . . . . . . . . 11 ⊢ 𝐻 ∈ Sℋ | |
4 | 3 | sheli 31243 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐻 → 𝑧 ∈ ℋ) |
5 | normcl 31154 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (normℎ‘𝑧) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → (normℎ‘𝑧) ∈ ℝ) |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ∈ ℝ) |
8 | normne0 31159 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) | |
9 | 4, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) |
10 | 9 | biimpar 477 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ≠ 0) |
11 | 7, 10 | rereccld 12092 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℝ) |
12 | 11 | recnd 11287 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℂ) |
13 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → 𝑧 ∈ 𝐻) | |
14 | shmulcl 31247 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ (1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) | |
15 | 3, 14 | mp3an1 1447 | . . . . . 6 ⊢ (((1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
16 | 12, 13, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
17 | norm1 31278 | . . . . . 6 ⊢ ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) | |
18 | 4, 17 | sylan 580 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) |
19 | fveqeq2 6916 | . . . . . 6 ⊢ (𝑦 = ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) → ((normℎ‘𝑦) = 1 ↔ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1)) | |
20 | 19 | rspcev 3622 | . . . . 5 ⊢ ((((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻 ∧ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
21 | 16, 18, 20 | syl2anc 584 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
22 | 21 | rexlimiva 3145 | . . 3 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
23 | ax-1ne0 11222 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
24 | 23 | neii 2940 | . . . . . . 7 ⊢ ¬ 1 = 0 |
25 | eqeq1 2739 | . . . . . . 7 ⊢ ((normℎ‘𝑦) = 1 → ((normℎ‘𝑦) = 0 ↔ 1 = 0)) | |
26 | 24, 25 | mtbiri 327 | . . . . . 6 ⊢ ((normℎ‘𝑦) = 1 → ¬ (normℎ‘𝑦) = 0) |
27 | 3 | sheli 31243 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ) |
28 | norm-i 31158 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) | |
29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) |
30 | 29 | necon3bbid 2976 | . . . . . 6 ⊢ (𝑦 ∈ 𝐻 → (¬ (normℎ‘𝑦) = 0 ↔ 𝑦 ≠ 0ℎ)) |
31 | 26, 30 | imbitrid 244 | . . . . 5 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 1 → 𝑦 ≠ 0ℎ)) |
32 | 31 | reximia 3079 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ) |
33 | neeq1 3001 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
34 | 33 | cbvrexvw 3236 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
35 | 32, 34 | sylib 218 | . . 3 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
36 | 22, 35 | impbii 209 | . 2 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
37 | 2, 36 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 / cdiv 11918 ℋchba 30948 ·ℎ csm 30950 normℎcno 30952 0ℎc0v 30953 Sℋ csh 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-hilex 31028 ax-hfvadd 31029 ax-hv0cl 31032 ax-hfvmul 31034 ax-hvmul0 31039 ax-hfi 31108 ax-his1 31111 ax-his3 31113 ax-his4 31114 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-hnorm 30997 df-sh 31236 |
This theorem is referenced by: norm1hex 31280 pjnmopi 32177 |
Copyright terms: Public domain | W3C validator |