HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm1exi Structured version   Visualization version   GIF version

Theorem norm1exi 29033
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
norm1ex.1 𝐻S
Assertion
Ref Expression
norm1exi (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Distinct variable groups:   𝑥,𝐻   𝑦,𝐻

Proof of Theorem norm1exi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 neeq1 3049 . . 3 (𝑥 = 𝑧 → (𝑥 ≠ 0𝑧 ≠ 0))
21cbvrexvw 3397 . 2 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3 norm1ex.1 . . . . . . . . . . 11 𝐻S
43sheli 28997 . . . . . . . . . 10 (𝑧𝐻𝑧 ∈ ℋ)
5 normcl 28908 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
64, 5syl 17 . . . . . . . . 9 (𝑧𝐻 → (norm𝑧) ∈ ℝ)
76adantr 484 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ∈ ℝ)
8 normne0 28913 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
94, 8syl 17 . . . . . . . . 9 (𝑧𝐻 → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
109biimpar 481 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ≠ 0)
117, 10rereccld 11456 . . . . . . 7 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℝ)
1211recnd 10658 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℂ)
13 simpl 486 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → 𝑧𝐻)
14 shmulcl 29001 . . . . . . 7 ((𝐻S ∧ (1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
153, 14mp3an1 1445 . . . . . 6 (((1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
1612, 13, 15syl2anc 587 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
17 norm1 29032 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
184, 17sylan 583 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
19 fveqeq2 6654 . . . . . 6 (𝑦 = ((1 / (norm𝑧)) · 𝑧) → ((norm𝑦) = 1 ↔ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1))
2019rspcev 3571 . . . . 5 ((((1 / (norm𝑧)) · 𝑧) ∈ 𝐻 ∧ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1) → ∃𝑦𝐻 (norm𝑦) = 1)
2116, 18, 20syl2anc 587 . . . 4 ((𝑧𝐻𝑧 ≠ 0) → ∃𝑦𝐻 (norm𝑦) = 1)
2221rexlimiva 3240 . . 3 (∃𝑧𝐻 𝑧 ≠ 0 → ∃𝑦𝐻 (norm𝑦) = 1)
23 ax-1ne0 10595 . . . . . . . 8 1 ≠ 0
2423neii 2989 . . . . . . 7 ¬ 1 = 0
25 eqeq1 2802 . . . . . . 7 ((norm𝑦) = 1 → ((norm𝑦) = 0 ↔ 1 = 0))
2624, 25mtbiri 330 . . . . . 6 ((norm𝑦) = 1 → ¬ (norm𝑦) = 0)
273sheli 28997 . . . . . . . 8 (𝑦𝐻𝑦 ∈ ℋ)
28 norm-i 28912 . . . . . . . 8 (𝑦 ∈ ℋ → ((norm𝑦) = 0 ↔ 𝑦 = 0))
2927, 28syl 17 . . . . . . 7 (𝑦𝐻 → ((norm𝑦) = 0 ↔ 𝑦 = 0))
3029necon3bbid 3024 . . . . . 6 (𝑦𝐻 → (¬ (norm𝑦) = 0 ↔ 𝑦 ≠ 0))
3126, 30syl5ib 247 . . . . 5 (𝑦𝐻 → ((norm𝑦) = 1 → 𝑦 ≠ 0))
3231reximia 3205 . . . 4 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦𝐻 𝑦 ≠ 0)
33 neeq1 3049 . . . . 5 (𝑦 = 𝑧 → (𝑦 ≠ 0𝑧 ≠ 0))
3433cbvrexvw 3397 . . . 4 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3532, 34sylib 221 . . 3 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑧𝐻 𝑧 ≠ 0)
3622, 35impbii 212 . 2 (∃𝑧𝐻 𝑧 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
372, 36bitri 278 1 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   / cdiv 11286  chba 28702   · csm 28704  normcno 28706  0c0v 28707   S csh 28711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-hilex 28782  ax-hfvadd 28783  ax-hv0cl 28786  ax-hfvmul 28788  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his3 28867  ax-his4 28868
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-hnorm 28751  df-sh 28990
This theorem is referenced by:  norm1hex  29034  pjnmopi  29931
  Copyright terms: Public domain W3C validator