Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > norm1exi | Structured version Visualization version GIF version |
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm1ex.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
norm1exi | ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3008 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
2 | 1 | cbvrexvw 3382 | . 2 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
3 | norm1ex.1 | . . . . . . . . . . 11 ⊢ 𝐻 ∈ Sℋ | |
4 | 3 | sheli 29572 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐻 → 𝑧 ∈ ℋ) |
5 | normcl 29483 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (normℎ‘𝑧) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → (normℎ‘𝑧) ∈ ℝ) |
7 | 6 | adantr 481 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ∈ ℝ) |
8 | normne0 29488 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) | |
9 | 4, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) |
10 | 9 | biimpar 478 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ≠ 0) |
11 | 7, 10 | rereccld 11802 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℝ) |
12 | 11 | recnd 11004 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℂ) |
13 | simpl 483 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → 𝑧 ∈ 𝐻) | |
14 | shmulcl 29576 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ (1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) | |
15 | 3, 14 | mp3an1 1447 | . . . . . 6 ⊢ (((1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
16 | 12, 13, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
17 | norm1 29607 | . . . . . 6 ⊢ ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) | |
18 | 4, 17 | sylan 580 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) |
19 | fveqeq2 6780 | . . . . . 6 ⊢ (𝑦 = ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) → ((normℎ‘𝑦) = 1 ↔ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1)) | |
20 | 19 | rspcev 3561 | . . . . 5 ⊢ ((((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻 ∧ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
21 | 16, 18, 20 | syl2anc 584 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
22 | 21 | rexlimiva 3212 | . . 3 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
23 | ax-1ne0 10941 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
24 | 23 | neii 2947 | . . . . . . 7 ⊢ ¬ 1 = 0 |
25 | eqeq1 2744 | . . . . . . 7 ⊢ ((normℎ‘𝑦) = 1 → ((normℎ‘𝑦) = 0 ↔ 1 = 0)) | |
26 | 24, 25 | mtbiri 327 | . . . . . 6 ⊢ ((normℎ‘𝑦) = 1 → ¬ (normℎ‘𝑦) = 0) |
27 | 3 | sheli 29572 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ) |
28 | norm-i 29487 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) | |
29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) |
30 | 29 | necon3bbid 2983 | . . . . . 6 ⊢ (𝑦 ∈ 𝐻 → (¬ (normℎ‘𝑦) = 0 ↔ 𝑦 ≠ 0ℎ)) |
31 | 26, 30 | syl5ib 243 | . . . . 5 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 1 → 𝑦 ≠ 0ℎ)) |
32 | 31 | reximia 3175 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ) |
33 | neeq1 3008 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
34 | 33 | cbvrexvw 3382 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
35 | 32, 34 | sylib 217 | . . 3 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
36 | 22, 35 | impbii 208 | . 2 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
37 | 2, 36 | bitri 274 | 1 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∃wrex 3067 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ℝcr 10871 0cc0 10872 1c1 10873 / cdiv 11632 ℋchba 29277 ·ℎ csm 29279 normℎcno 29281 0ℎc0v 29282 Sℋ csh 29286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-hilex 29357 ax-hfvadd 29358 ax-hv0cl 29361 ax-hfvmul 29363 ax-hvmul0 29368 ax-hfi 29437 ax-his1 29440 ax-his3 29442 ax-his4 29443 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-hnorm 29326 df-sh 29565 |
This theorem is referenced by: norm1hex 29609 pjnmopi 30506 |
Copyright terms: Public domain | W3C validator |