| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm1exi | Structured version Visualization version GIF version | ||
| Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm1ex.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| norm1exi | ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 2987 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
| 2 | 1 | cbvrexvw 3214 | . 2 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
| 3 | norm1ex.1 | . . . . . . . . . . 11 ⊢ 𝐻 ∈ Sℋ | |
| 4 | 3 | sheli 31116 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐻 → 𝑧 ∈ ℋ) |
| 5 | normcl 31027 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (normℎ‘𝑧) ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → (normℎ‘𝑧) ∈ ℝ) |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ∈ ℝ) |
| 8 | normne0 31032 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) | |
| 9 | 4, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) |
| 10 | 9 | biimpar 477 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ≠ 0) |
| 11 | 7, 10 | rereccld 11985 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℝ) |
| 12 | 11 | recnd 11178 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℂ) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → 𝑧 ∈ 𝐻) | |
| 14 | shmulcl 31120 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ (1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) | |
| 15 | 3, 14 | mp3an1 1450 | . . . . . 6 ⊢ (((1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
| 16 | 12, 13, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
| 17 | norm1 31151 | . . . . . 6 ⊢ ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) | |
| 18 | 4, 17 | sylan 580 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) |
| 19 | fveqeq2 6849 | . . . . . 6 ⊢ (𝑦 = ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) → ((normℎ‘𝑦) = 1 ↔ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1)) | |
| 20 | 19 | rspcev 3585 | . . . . 5 ⊢ ((((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻 ∧ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| 21 | 16, 18, 20 | syl2anc 584 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| 22 | 21 | rexlimiva 3126 | . . 3 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| 23 | ax-1ne0 11113 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
| 24 | 23 | neii 2927 | . . . . . . 7 ⊢ ¬ 1 = 0 |
| 25 | eqeq1 2733 | . . . . . . 7 ⊢ ((normℎ‘𝑦) = 1 → ((normℎ‘𝑦) = 0 ↔ 1 = 0)) | |
| 26 | 24, 25 | mtbiri 327 | . . . . . 6 ⊢ ((normℎ‘𝑦) = 1 → ¬ (normℎ‘𝑦) = 0) |
| 27 | 3 | sheli 31116 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ) |
| 28 | norm-i 31031 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) | |
| 29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) |
| 30 | 29 | necon3bbid 2962 | . . . . . 6 ⊢ (𝑦 ∈ 𝐻 → (¬ (normℎ‘𝑦) = 0 ↔ 𝑦 ≠ 0ℎ)) |
| 31 | 26, 30 | imbitrid 244 | . . . . 5 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 1 → 𝑦 ≠ 0ℎ)) |
| 32 | 31 | reximia 3064 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ) |
| 33 | neeq1 2987 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
| 34 | 33 | cbvrexvw 3214 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
| 35 | 32, 34 | sylib 218 | . . 3 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
| 36 | 22, 35 | impbii 209 | . 2 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| 37 | 2, 36 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 / cdiv 11811 ℋchba 30821 ·ℎ csm 30823 normℎcno 30825 0ℎc0v 30826 Sℋ csh 30830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-hilex 30901 ax-hfvadd 30902 ax-hv0cl 30905 ax-hfvmul 30907 ax-hvmul0 30912 ax-hfi 30981 ax-his1 30984 ax-his3 30986 ax-his4 30987 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-hnorm 30870 df-sh 31109 |
| This theorem is referenced by: norm1hex 31153 pjnmopi 32050 |
| Copyright terms: Public domain | W3C validator |