| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm1exi | Structured version Visualization version GIF version | ||
| Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm1ex.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| norm1exi | ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 2995 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
| 2 | 1 | cbvrexvw 3225 | . 2 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
| 3 | norm1ex.1 | . . . . . . . . . . 11 ⊢ 𝐻 ∈ Sℋ | |
| 4 | 3 | sheli 31200 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐻 → 𝑧 ∈ ℋ) |
| 5 | normcl 31111 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (normℎ‘𝑧) ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → (normℎ‘𝑧) ∈ ℝ) |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ∈ ℝ) |
| 8 | normne0 31116 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) | |
| 9 | 4, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) |
| 10 | 9 | biimpar 477 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ≠ 0) |
| 11 | 7, 10 | rereccld 12073 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℝ) |
| 12 | 11 | recnd 11268 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℂ) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → 𝑧 ∈ 𝐻) | |
| 14 | shmulcl 31204 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ (1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) | |
| 15 | 3, 14 | mp3an1 1450 | . . . . . 6 ⊢ (((1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
| 16 | 12, 13, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
| 17 | norm1 31235 | . . . . . 6 ⊢ ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) | |
| 18 | 4, 17 | sylan 580 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) |
| 19 | fveqeq2 6890 | . . . . . 6 ⊢ (𝑦 = ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) → ((normℎ‘𝑦) = 1 ↔ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1)) | |
| 20 | 19 | rspcev 3606 | . . . . 5 ⊢ ((((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻 ∧ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| 21 | 16, 18, 20 | syl2anc 584 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| 22 | 21 | rexlimiva 3134 | . . 3 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| 23 | ax-1ne0 11203 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
| 24 | 23 | neii 2935 | . . . . . . 7 ⊢ ¬ 1 = 0 |
| 25 | eqeq1 2740 | . . . . . . 7 ⊢ ((normℎ‘𝑦) = 1 → ((normℎ‘𝑦) = 0 ↔ 1 = 0)) | |
| 26 | 24, 25 | mtbiri 327 | . . . . . 6 ⊢ ((normℎ‘𝑦) = 1 → ¬ (normℎ‘𝑦) = 0) |
| 27 | 3 | sheli 31200 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ) |
| 28 | norm-i 31115 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) | |
| 29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) |
| 30 | 29 | necon3bbid 2970 | . . . . . 6 ⊢ (𝑦 ∈ 𝐻 → (¬ (normℎ‘𝑦) = 0 ↔ 𝑦 ≠ 0ℎ)) |
| 31 | 26, 30 | imbitrid 244 | . . . . 5 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 1 → 𝑦 ≠ 0ℎ)) |
| 32 | 31 | reximia 3072 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ) |
| 33 | neeq1 2995 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
| 34 | 33 | cbvrexvw 3225 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
| 35 | 32, 34 | sylib 218 | . . 3 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
| 36 | 22, 35 | impbii 209 | . 2 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| 37 | 2, 36 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 / cdiv 11899 ℋchba 30905 ·ℎ csm 30907 normℎcno 30909 0ℎc0v 30910 Sℋ csh 30914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-hilex 30985 ax-hfvadd 30986 ax-hv0cl 30989 ax-hfvmul 30991 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his3 31070 ax-his4 31071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-hnorm 30954 df-sh 31193 |
| This theorem is referenced by: norm1hex 31237 pjnmopi 32134 |
| Copyright terms: Public domain | W3C validator |