![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm1exi | Structured version Visualization version GIF version |
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm1ex.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
norm1exi | ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 2992 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
2 | 1 | cbvrexvw 3225 | . 2 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
3 | norm1ex.1 | . . . . . . . . . . 11 ⊢ 𝐻 ∈ Sℋ | |
4 | 3 | sheli 31096 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐻 → 𝑧 ∈ ℋ) |
5 | normcl 31007 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (normℎ‘𝑧) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → (normℎ‘𝑧) ∈ ℝ) |
7 | 6 | adantr 479 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ∈ ℝ) |
8 | normne0 31012 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) | |
9 | 4, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐻 → ((normℎ‘𝑧) ≠ 0 ↔ 𝑧 ≠ 0ℎ)) |
10 | 9 | biimpar 476 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘𝑧) ≠ 0) |
11 | 7, 10 | rereccld 12074 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℝ) |
12 | 11 | recnd 11274 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (1 / (normℎ‘𝑧)) ∈ ℂ) |
13 | simpl 481 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → 𝑧 ∈ 𝐻) | |
14 | shmulcl 31100 | . . . . . . 7 ⊢ ((𝐻 ∈ Sℋ ∧ (1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) | |
15 | 3, 14 | mp3an1 1444 | . . . . . 6 ⊢ (((1 / (normℎ‘𝑧)) ∈ ℂ ∧ 𝑧 ∈ 𝐻) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
16 | 12, 13, 15 | syl2anc 582 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻) |
17 | norm1 31131 | . . . . . 6 ⊢ ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) | |
18 | 4, 17 | sylan 578 | . . . . 5 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) |
19 | fveqeq2 6905 | . . . . . 6 ⊢ (𝑦 = ((1 / (normℎ‘𝑧)) ·ℎ 𝑧) → ((normℎ‘𝑦) = 1 ↔ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1)) | |
20 | 19 | rspcev 3606 | . . . . 5 ⊢ ((((1 / (normℎ‘𝑧)) ·ℎ 𝑧) ∈ 𝐻 ∧ (normℎ‘((1 / (normℎ‘𝑧)) ·ℎ 𝑧)) = 1) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
21 | 16, 18, 20 | syl2anc 582 | . . . 4 ⊢ ((𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ) → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
22 | 21 | rexlimiva 3136 | . . 3 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ → ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
23 | ax-1ne0 11209 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
24 | 23 | neii 2931 | . . . . . . 7 ⊢ ¬ 1 = 0 |
25 | eqeq1 2729 | . . . . . . 7 ⊢ ((normℎ‘𝑦) = 1 → ((normℎ‘𝑦) = 0 ↔ 1 = 0)) | |
26 | 24, 25 | mtbiri 326 | . . . . . 6 ⊢ ((normℎ‘𝑦) = 1 → ¬ (normℎ‘𝑦) = 0) |
27 | 3 | sheli 31096 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ) |
28 | norm-i 31011 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) | |
29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 0 ↔ 𝑦 = 0ℎ)) |
30 | 29 | necon3bbid 2967 | . . . . . 6 ⊢ (𝑦 ∈ 𝐻 → (¬ (normℎ‘𝑦) = 0 ↔ 𝑦 ≠ 0ℎ)) |
31 | 26, 30 | imbitrid 243 | . . . . 5 ⊢ (𝑦 ∈ 𝐻 → ((normℎ‘𝑦) = 1 → 𝑦 ≠ 0ℎ)) |
32 | 31 | reximia 3070 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ) |
33 | neeq1 2992 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ)) | |
34 | 33 | cbvrexvw 3225 | . . . 4 ⊢ (∃𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ↔ ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
35 | 32, 34 | sylib 217 | . . 3 ⊢ (∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1 → ∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ) |
36 | 22, 35 | impbii 208 | . 2 ⊢ (∃𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
37 | 2, 36 | bitri 274 | 1 ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 ℝcr 11139 0cc0 11140 1c1 11141 / cdiv 11903 ℋchba 30801 ·ℎ csm 30803 normℎcno 30805 0ℎc0v 30806 Sℋ csh 30810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-hilex 30881 ax-hfvadd 30882 ax-hv0cl 30885 ax-hfvmul 30887 ax-hvmul0 30892 ax-hfi 30961 ax-his1 30964 ax-his3 30966 ax-his4 30967 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-hnorm 30850 df-sh 31089 |
This theorem is referenced by: norm1hex 31133 pjnmopi 32030 |
Copyright terms: Public domain | W3C validator |