HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm1exi Structured version   Visualization version   GIF version

Theorem norm1exi 31222
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
norm1ex.1 𝐻S
Assertion
Ref Expression
norm1exi (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Distinct variable groups:   𝑥,𝐻   𝑦,𝐻

Proof of Theorem norm1exi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2990 . . 3 (𝑥 = 𝑧 → (𝑥 ≠ 0𝑧 ≠ 0))
21cbvrexvw 3211 . 2 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3 norm1ex.1 . . . . . . . . . . 11 𝐻S
43sheli 31186 . . . . . . . . . 10 (𝑧𝐻𝑧 ∈ ℋ)
5 normcl 31097 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
64, 5syl 17 . . . . . . . . 9 (𝑧𝐻 → (norm𝑧) ∈ ℝ)
76adantr 480 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ∈ ℝ)
8 normne0 31102 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
94, 8syl 17 . . . . . . . . 9 (𝑧𝐻 → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
109biimpar 477 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ≠ 0)
117, 10rereccld 11943 . . . . . . 7 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℝ)
1211recnd 11135 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℂ)
13 simpl 482 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → 𝑧𝐻)
14 shmulcl 31190 . . . . . . 7 ((𝐻S ∧ (1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
153, 14mp3an1 1450 . . . . . 6 (((1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
1612, 13, 15syl2anc 584 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
17 norm1 31221 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
184, 17sylan 580 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
19 fveqeq2 6826 . . . . . 6 (𝑦 = ((1 / (norm𝑧)) · 𝑧) → ((norm𝑦) = 1 ↔ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1))
2019rspcev 3572 . . . . 5 ((((1 / (norm𝑧)) · 𝑧) ∈ 𝐻 ∧ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1) → ∃𝑦𝐻 (norm𝑦) = 1)
2116, 18, 20syl2anc 584 . . . 4 ((𝑧𝐻𝑧 ≠ 0) → ∃𝑦𝐻 (norm𝑦) = 1)
2221rexlimiva 3125 . . 3 (∃𝑧𝐻 𝑧 ≠ 0 → ∃𝑦𝐻 (norm𝑦) = 1)
23 ax-1ne0 11070 . . . . . . . 8 1 ≠ 0
2423neii 2930 . . . . . . 7 ¬ 1 = 0
25 eqeq1 2735 . . . . . . 7 ((norm𝑦) = 1 → ((norm𝑦) = 0 ↔ 1 = 0))
2624, 25mtbiri 327 . . . . . 6 ((norm𝑦) = 1 → ¬ (norm𝑦) = 0)
273sheli 31186 . . . . . . . 8 (𝑦𝐻𝑦 ∈ ℋ)
28 norm-i 31101 . . . . . . . 8 (𝑦 ∈ ℋ → ((norm𝑦) = 0 ↔ 𝑦 = 0))
2927, 28syl 17 . . . . . . 7 (𝑦𝐻 → ((norm𝑦) = 0 ↔ 𝑦 = 0))
3029necon3bbid 2965 . . . . . 6 (𝑦𝐻 → (¬ (norm𝑦) = 0 ↔ 𝑦 ≠ 0))
3126, 30imbitrid 244 . . . . 5 (𝑦𝐻 → ((norm𝑦) = 1 → 𝑦 ≠ 0))
3231reximia 3067 . . . 4 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦𝐻 𝑦 ≠ 0)
33 neeq1 2990 . . . . 5 (𝑦 = 𝑧 → (𝑦 ≠ 0𝑧 ≠ 0))
3433cbvrexvw 3211 . . . 4 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3532, 34sylib 218 . . 3 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑧𝐻 𝑧 ≠ 0)
3622, 35impbii 209 . 2 (∃𝑧𝐻 𝑧 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
372, 36bitri 275 1 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   / cdiv 11769  chba 30891   · csm 30893  normcno 30895  0c0v 30896   S csh 30900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-hilex 30971  ax-hfvadd 30972  ax-hv0cl 30975  ax-hfvmul 30977  ax-hvmul0 30982  ax-hfi 31051  ax-his1 31054  ax-his3 31056  ax-his4 31057
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-hnorm 30940  df-sh 31179
This theorem is referenced by:  norm1hex  31223  pjnmopi  32120
  Copyright terms: Public domain W3C validator